SAT-based bounded model checking (BMC) has been introduced as a complementary technique to BDD-based symbolic model checking in recent years, and a lot of successful work has been done in this direction. The approac...SAT-based bounded model checking (BMC) has been introduced as a complementary technique to BDD-based symbolic model checking in recent years, and a lot of successful work has been done in this direction. The approach was first introduced by A. Biere et al. in checking linear temporal logic (LTL) formulae and then also adapted to check formulae of the universal fragment of computation tree logic (ACTL) by W. Penczek et al. As the efficiency of model checking is still an important issue, we present an improved BMC approach for ACTL based on Penczek's method. We consider two aspects of the approach. One is reduction of the number of variables and transitions in the κ-model by distinguishing the temporal operator EX from the others. The other is simplification of the transformation of formulae by using uniform path encoding instead of a disjunction of all paths needed in the κ-model. With these improvements, for an ACTL formula, the length of the final encoding of the formula in the worst case is reduced. The improved approach is implemented in the tool BMV and is compared with the original one by applying both to two well known examples, mutual exclusion and dining philosophers. The comparison shoves the advantages of the improved approach with respect to the efficiency of model checking.展开更多
Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the t...Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the tree data more dearly and concisely. By making a distinction between proposition and predicate, a concise semantics interpretation for our modal logic is given. We also develop a model checking algorithm for the logic without △ operator. The correctness of the algorithm is shown. Such work can be seen as the basis of the semi-structured data processing language and more flexible type system.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.60573012 and No.60721061the National Basic Research 973 Program of China under Grant No.2002CB312200.
文摘SAT-based bounded model checking (BMC) has been introduced as a complementary technique to BDD-based symbolic model checking in recent years, and a lot of successful work has been done in this direction. The approach was first introduced by A. Biere et al. in checking linear temporal logic (LTL) formulae and then also adapted to check formulae of the universal fragment of computation tree logic (ACTL) by W. Penczek et al. As the efficiency of model checking is still an important issue, we present an improved BMC approach for ACTL based on Penczek's method. We consider two aspects of the approach. One is reduction of the number of variables and transitions in the κ-model by distinguishing the temporal operator EX from the others. The other is simplification of the transformation of formulae by using uniform path encoding instead of a disjunction of all paths needed in the κ-model. With these improvements, for an ACTL formula, the length of the final encoding of the formula in the worst case is reduced. The improved approach is implemented in the tool BMV and is compared with the original one by applying both to two well known examples, mutual exclusion and dining philosophers. The comparison shoves the advantages of the improved approach with respect to the efficiency of model checking.
基金Supported by the National Natural Sciences Foun-dation of China (60233010 ,60273034 ,60403014) ,863 ProgramofChina (2002AA116010) ,973 Programof China (2002CB312002)
文摘Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the tree data more dearly and concisely. By making a distinction between proposition and predicate, a concise semantics interpretation for our modal logic is given. We also develop a model checking algorithm for the logic without △ operator. The correctness of the algorithm is shown. Such work can be seen as the basis of the semi-structured data processing language and more flexible type system.