期刊文献+
共找到929篇文章
< 1 2 47 >
每页显示 20 50 100
Impact Damage Testing Study of Shanxi-Beijing Natural Gas Pipeline Based on Decision Tree Rotary Tiller Operation
1
作者 Liqiong Chen Kai Zhang +4 位作者 Song Yang Duo Xu Weihe Huang Hongxuan Hu Haonan Liu 《Structural Durability & Health Monitoring》 EI 2024年第5期683-706,共24页
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the... The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region. 展开更多
关键词 Natural gas pipeline rotary tiller operation third-party damage finite element simulation decision tree model safety management
下载PDF
Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree,random forest and information value models 被引量:9
2
作者 CHEN Tao ZHU Li +3 位作者 NIU Rui-qing TRINDER C John PENG Ling LEI Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期670-685,共16页
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de... This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR. 展开更多
关键词 MAPPING LANDSLIDE SUSCEPTIBILITY Gradient BOOSTING decision tree Random FOREST Information value model Three Gorges Reservoir
下载PDF
Automated soil resources mapping based on decision tree and Bayesian predictive modeling 被引量:1
3
作者 周斌 张新刚 王人潮 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期782-795,共14页
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra... This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area. 展开更多
关键词 Soil mapping decision tree Bayesian predictive modeling Knowledge-based classification Rule extracting
下载PDF
Ethnographic Decision Tree Modeling of the Decision Criteria and Decision Patterns for Adult Married Women with Unexpected Pregnancies
4
作者 Yu-Chan Li Yieh Loong Tsai Pei-Jung Lan 《Open Journal of Obstetrics and Gynecology》 2017年第10期1052-1063,共12页
Introduction: As far as adult and married women were concerned, when they occurred to “unplanned pregnancy”, they felt so surprised and concussive all the time. Besides, the unplanned pregnancy also affects the othe... Introduction: As far as adult and married women were concerned, when they occurred to “unplanned pregnancy”, they felt so surprised and concussive all the time. Besides, the unplanned pregnancy also affects the other members in the family system. Therefore, when married women have to face the choice: “birth” or “abortion”, they’ll consider lots of thoughts and different decision criteria and decision pattern under various influences on physician, mind, mental and society. The purpose of this study was to investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. Methods: The study uses the method—“Ethnographic Decision Tree Modeling” [1] to build model of the decision criteria and decision patterns involved when adult married women make a decision about their unplanned pregnancy. There are three process in the research method: “Pilot Study”—interview two groups, every group distinct 4 married adult women with unplanned pregnancies, which decide whether to terminate or continue an unplanned pregnancy, what is the items of decision characters affect to the choice: “birth” or “abortion”. “Building of the Model”, displays the importance in proper order of those items and build the modeling with these two groups of women. “Testing of the Model”: investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. The study interviewed 34 married adult women with 43 unplanned pregnancies totally. Results: The result of the study finds out 12 items of decision characters, including planning to get pregnant or not, stability of feelings for married partner, the points of view on life, was affected by mother, mother-in-law, an husband’s emphasis on male, the meanings of children, the financial burden, the plan an assignment of career and time, the past pregnant experiences, the status of raising children, the health of parents and fetus, the effect of living environment, and social and cultural vision. Besides, there are four decision patterns of married adult women with unplanned pregnancy are “receiving abortion positively”;“giving birth as long as getting pregnancy naturally”;“ the minds are hesitative and changeable”, and “being forced by important others.” Conclusion: By setting the decision model tree, we found several decision criteria and patterns, and possible modes actions to be taken, could offer to see the adult married women’s decision-making and struggles in mind about unplanned pregnancy. 展开更多
关键词 Ethnographic decision tree modeling ADULT and MARRIED Women UNPLANNED Pregnancy decision Pattern
下载PDF
Application of Exponential Distribution in Modeling of State Holding Time in HIV/AIDS Transition Dynamics
5
作者 Nahashon Mwirigi 《Open Journal of Modelling and Simulation》 2024年第4期159-183,共25页
Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential dis... Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential distributions and its modifications namely;Parameter proportion hazard (PH) and Accelerated failure time models (AFT) and their effectiveness in modeling the state holding time in Markov modeling of HIV/AIDS progression with and without risk factors. Patients were categorized by gender and age with female gender being the baseline. Data simulated using R software was fitted to each model, and the model parameters were estimated. The estimated P and Z values were then used to test the null hypothesis that the state waiting time data followed an Exponential distribution. Model identification criteria;Akaike information criteria (AIC), Bayesian information criteria (BIC), log-likelihood (LL), and R2 were used to evaluate the performance of the models. For the Survival Regression model, P and Z values supported the non-rejection of the null hypothesis for mixed gender without interaction and supported the rejection of the same for mixed gender with interaction term and males aged 50 - 60 years. Both Parameters supported the non-rejection of the null hypothesis in the rest of the age groups. For Gender male with interaction both P and Z values supported rejection in all the age groups except the age group 20 - 30 years. For Cox Proportional hazard and AFT models, both P and Z values supported the non-rejection of the null hypothesis across all age groups. The P-values for the three models supported different decisions for and against the Null hypothesis with AFT and Cox values supporting similar decisions in most of the age groups. Among the models considered, the regression assumption provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identification criteria. This was particularly evident in age and gender subgroups where the data exhibited non-proportional hazards and violated the assumptions required for the Cox Proportional Hazard model. Moreover, the simplicity of the regression model, along with its ability to capture essential state transitions without over fitting, made it a more appropriate choice. 展开更多
关键词 Markov Chain Markov Process Semi Markov Process Markov decision tree Stochastic Process Survival Rate CD4+ Levels Absorption Rates AFT model PH model
下载PDF
Decision modelling for economic evaluation of liver transplantation 被引量:6
6
作者 Zhi Qu Christian Krauth +6 位作者 Volker Eric Amelung Alexander Kaltenborn Jill Gwiasda Lena Harries Jan Beneke Harald Schrem Sebastian Liersch 《World Journal of Hepatology》 CAS 2018年第11期837-848,共12页
As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modell... As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs. 展开更多
关键词 Cost benefit analysis decision tree Liver transplantation decision analysis decision support models Resource allocation Cost effectiveness
下载PDF
BloomDT-An improved privacy-preserving decision tree inference scheme
7
作者 Sean Lalla Rongxing Lu +1 位作者 Yunguo Guan Songnian Zhang 《Journal of Information and Intelligence》 2024年第2期130-147,共18页
Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose... Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose private model details when hosting their models in the cloud.Due to the time and monetary investments associated with model training,model providers may be reluctant to host their models in the cloud due to these privacy concerns.Furthermore,clients may be reluctant to use these outsourced models because their private queries or their results may be disclosed to the cloud servers.In this paper,we propose BloomDT,a privacy-preserving scheme for decision tree inference,which uses Bloom filters to hide the original decision tree's structure,the threshold values of each node,and the order in which features are tested while maintaining reliable classification results that are secure even if the cloud servers collude.Our scheme's security and performance are verified through rigorous testing and analysis. 展开更多
关键词 decision tree Privacy-preserving machine learning Bloom filter model outsourcing
原文传递
Complementary parametric probit regression and nonparametric classi?cation tree modeling approaches to analyze factors affecting severity of work zone weather-related crashes 被引量:1
8
作者 Ali Ghasemzadeh Mohamed M.Ahmed 《Journal of Modern Transportation》 2019年第2期129-140,共12页
Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent ... Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weatherrelated crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions. 展开更多
关键词 ADVERSE WEATHER Work zone Safety CRASH characteristics PROBIT model decision tree
下载PDF
Intelligent prediction of RBC demand in trauma patients using decision tree methods
9
作者 Yan-Nan Feng Zhen-Hua Xu +3 位作者 Jun-Ting Liu Xiao-Lin Sun De-Qing Wang Yang Yu 《Military Medical Research》 SCIE CSCD 2022年第2期152-163,共12页
Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurat... Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment. 展开更多
关键词 Mathematical model Intelligent prediction decision tree Non-invasive parameters Invasive parameters TRAUMA TRANSFUSION
下载PDF
A Decision Support Model for Predicting Avoidable Re-Hospitalization of Breast Cancer Patients in Kenyatta National Hospital
10
作者 Christopher Oyuech Otieno Oboko Robert Obwocha Andrew Mwaura Kahonge 《Journal of Software Engineering and Applications》 2022年第8期275-307,共33页
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ... This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model. 展开更多
关键词 Re-Engineering Processes (RP) Data Mining Machine Learning Classification decision tree Python Web-Based decision Support model (DSM) Clinical decision Support Systems (CDSSs)
下载PDF
基于机器学习耦合模型预测FDM零件的表面粗糙度 被引量:1
11
作者 赵陶钰 邵鹏华 《塑料工业》 CAS CSCD 北大核心 2024年第5期116-123,共8页
熔融沉积工艺(FDM)制造的零件表面粗糙度高,不仅影响了零件外观,还降低了性能。采用响应面实验设计,研究了层高(A)、填充密度(B)、喷嘴温度(C)、床层温度(D)和打印速度(E)对聚乳酸(PLA)零件表面粗糙度的影响。同时,将遗传算法(GA)与决策... 熔融沉积工艺(FDM)制造的零件表面粗糙度高,不仅影响了零件外观,还降低了性能。采用响应面实验设计,研究了层高(A)、填充密度(B)、喷嘴温度(C)、床层温度(D)和打印速度(E)对聚乳酸(PLA)零件表面粗糙度的影响。同时,将遗传算法(GA)与决策树(DT)、人工神经元网络(ANN)两种机器学习模型相结合,预测了零件的表面粗糙度。结果表明,A、B、C和E是显著影响零件表面粗糙度的主效应,A×B、A×C、A×E、B×C、B×E、C×E是影响显著的交互效应。GA+DT耦合模型预测PLA零件表面粗糙度的准确性更高,预测值与实验值的相关系数(R2)、均方误差(MSE)和平均绝对误差(MAE)分别为0.952、0.132和0.234,优于GA+ANN的0.823、1.561和1.759。GA+DT模型的预测值与实验值的Pearson相关系数为0.984,而GA+ANN模型仅为0.903,这表明GA+DT模型在预测PLA零件表面粗糙度时准确度更高。 展开更多
关键词 决策树 人工神经元网络 遗传算法 熔融沉积 表面粗糙度 聚乳酸
下载PDF
决策树和Logistic回归模型对体外受精-胚胎移植患者妊娠结局的预测价值比较
12
作者 李娜 苗聪秀 +2 位作者 苗卉 李丹 李敏 《暨南大学学报(自然科学与医学版)》 CAS 北大核心 2024年第5期493-501,共9页
目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根... 目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根据妊娠结局分为妊娠成功组(215例)和妊娠失败组(135例)。收集患者临床资料,建立IVF-ET患者妊娠结局Logistic回归和决策树预测模型,并在是否基于Logistic回归结果条件下建立决策树分析模型(决策树1和决策树2),采用受试者工作特征(receiver operating characteristic,ROC)曲线对模型预测效果进行评价。结果:350例患者中,妊娠成功患者占61.43%,妊娠失败者占38.57%。妊娠失败组年龄≥35岁、不孕年限≥5年、周期次数≥1次、有心理精神障碍的患者比例及HCG日血清孕酮水平均高于妊娠成功组,获卵数≥10枚、受精率≥75%的患者比例及HCG日子宫内膜厚度、优质胚胎数小于妊娠成功组(P<0.05)。多因素Logistic回归分析结果显示,年龄、HCG日血清孕酮水平、优质胚胎数及心理精神障碍均是IVF-ET患者妊娠结局的影响因素(P<0.05)。决策树模型显示,年龄、HCG日血清孕酮水平、优质胚胎数为IVF-ET患者妊娠结局的影响因素。Logistic回归模型曲线下面积(area under curve,AUC)为0.832,预测敏感度、特异度和准确度分别为87.3%、71.4%、83.5%;决策树1的AUC为0.859,预测敏感度、特异度和准确度分别为85.1%、76.8%、85.6%;决策树2的AUC为0.820,预测敏感度、特异度和准确度分别为83.7%、73.2%、82.4%。决策树1的AUC大于决策树2(P<0.05),但与Logistic回归模型的AUC比较差异无统计学意义(P>0.05)。结论:Logistic回归模型和决策树模型对于IVF-ET患者妊娠结局均有一定的预测价值。 展开更多
关键词 体外受精-胚胎移植 妊娠结局 决策树 LOGISTIC回归模型
下载PDF
ICU病人突发谵妄的防控机制研究
13
作者 张晓燕 秦君玫 +1 位作者 陈丽 陈玉婷 《蚌埠医学院学报》 CAS 2024年第2期277-280,共4页
目的:分析ICU病人突发谵妄的主要危险因素,构建logistic回归模型和决策树模型,并进行前瞻性验证,为临床建立早期识别谵妄发生的最佳防控机制。方法:随机选取2018年1月至2020年1月病人198例为模型组,开展回顾性分析,根据24 h内谵妄诊断... 目的:分析ICU病人突发谵妄的主要危险因素,构建logistic回归模型和决策树模型,并进行前瞻性验证,为临床建立早期识别谵妄发生的最佳防控机制。方法:随机选取2018年1月至2020年1月病人198例为模型组,开展回顾性分析,根据24 h内谵妄诊断标准分为谵妄88例和无谵妄110例,多因素logistic回归分析筛选危险因素。另选择2020年2月至2021年2月87例病人为验证组,受试者工作特征曲线(ROC)比较2种模型的预测效能。结果:与无谵妄病人相比,谵妄病人的年龄、急性生理与慢性健康(APACHEⅡ)评分和并发症增加,镇静时间和机械通气时间延长,血清神经烯醇化酶(NSE)和动脉血乳酸升高,氧合指数降低(P<0.01)。logistic回归分析显示,APACHEⅡ评分高、血清NSE和动脉血乳酸水平高是谵妄发生的独立危险因素(P<0.01)。分别构建logistic回归模型和决策树模型,经验证组ROC分析显示,决策树模型的曲线下面积0.865高于logistic回归模型的0.812(P<0.01)。结论:ICU病人24 h内突发谵妄的发生率较高,多个危险因素可能参与了谵妄的发生,包括APACHEⅡ评分、血清NSE和动脉血乳酸水平升高,决策树模型比传统logistic回归模型可能具有更高的预测效能,可为指导临床医护人员早期正确识别谵妄高风险群体提供了更佳的评估手段。 展开更多
关键词 谵妄 决策树模型 神经烯醇化酶
下载PDF
基于大语言模型的个性化实验报告评语自动生成与应用
14
作者 翟洁 李艳豪 +1 位作者 李彬彬 郭卫斌 《计算机工程》 CAS CSCD 北大核心 2024年第7期42-52,共11页
在计算机实验报告评阅过程中,不同的实验报告评价体系呈现出多样性和差异性,固化的实验评语模板缺乏个性化的内容,评价结果往往未给出可解释性的依据。针对以上问题,提出基于大语言模型的个性化实验报告评语自动生成框架。通过主题-评... 在计算机实验报告评阅过程中,不同的实验报告评价体系呈现出多样性和差异性,固化的实验评语模板缺乏个性化的内容,评价结果往往未给出可解释性的依据。针对以上问题,提出基于大语言模型的个性化实验报告评语自动生成框架。通过主题-评估决策-集成提示策略,从教师的实验需求、代码质量需求中抽取该实验特有的评价体系,形成评估决策树,构建计算机软件方向课程共享的评估决策树库。设计基于大语言模型和决策树的实验要求、代码质量主题评级方法,从评估决策树库检索匹配学生实验报告内容的评估决策树,结合实验报告和代码文本,自动生成实验主题、代码质量主题定量或定性的评级结果及对应的可解释性依据。在实验报告模板中融入学生已完成的实验任务、主题评级结果、评价依据等,生成个性化的实验评语。实验结果表明,基于主题-评估决策-集成提示策略的决策树生成结果明显优于未用提示的方法,该策略各部分具有一定的有效性和合理性,同时自动生成的评级结果和教师原先批阅的评阅结果对比,软件测试、面向对象程序设计、电商金融课程示例匹配正确率均达到90%以上。从任课教师对于自动生成的评语评分分析,评语在流畅性、相关性、合理性3个维度上达到了较高的质量水平。 展开更多
关键词 大语言模型 实验评估决策树 个性化 评语自动生成 代码质量评价
下载PDF
800 km客运班线事故特征及情景研究
15
作者 刘畅 夏鸿文 +2 位作者 孟兴凯 王雪然 吴初娜 《公路交通科技》 CAS CSCD 北大核心 2024年第1期160-168,共9页
为降低800 km以上客运班线事故潜在发生性,提高企业安全防控能力,研究分析了800 km以上客运班线事故典型特征,构建事故发生重要情景。基于2014—2020年800 km以上客运班线道路交通事故数据展开致因分析及事故易发情景研究。以人、路、... 为降低800 km以上客运班线事故潜在发生性,提高企业安全防控能力,研究分析了800 km以上客运班线事故典型特征,构建事故发生重要情景。基于2014—2020年800 km以上客运班线道路交通事故数据展开致因分析及事故易发情景研究。以人、路、环境为依据,选取关键特征构建了事故特征指标体系。利用决策树模型构建了安全风险模型,探索了运行时段、人因、天气状况、季度、事故发生地区、道路线形、路面状况、节假日情况、春运情况、公路技术等级和公路行政等系统关键因子与翻车、刮擦、碰撞、撞击固定物、追尾、坠车等事故形态间的潜在关系。剖析了事故发生时交通系统内人、路及环境等因素特征及形态,以此构建了800 km以上客运班线的事故易发情景。结果表明:运行时段、人因、天气状况是影响800 km以上客运班线事故发生的关键因子,且与季度、事故发生地区、道路线形、路面状况等因子存在多重耦合关系;节假日情况、春运情况、公路技术等级和公路行政等级不是影响800 km以上客运班线事故发生的关键因子。研究为降低800 km以上客运班线的事故潜在发生性及企业安全防控提供理论依据。未来,道路运输管理部门与道路运输企业应强化安全管理,规范驾驶员安全驾驶行为,普及事故易发情景下的防御性驾驶知识。 展开更多
关键词 交通安全 事故特征情景 决策树模型 800 km以上客运班线 事故致因分析
下载PDF
基于多信息融合的换流站直流设备健康状态决策树评价模型
16
作者 石延辉 杨洋 +2 位作者 阮彦俊 张博 洪乐洲 《微型电脑应用》 2024年第7期97-101,共5页
针对换流站直流设备间交互信息融合能力较差、小样本与大样本难以均衡的问题,设计基于多信息融合的换流站直流设备健康状态决策树评价模型。使用同质多传感器多信息数据融合方法对多信息实施融合处理;利用k近邻方法和层次聚类方法划分... 针对换流站直流设备间交互信息融合能力较差、小样本与大样本难以均衡的问题,设计基于多信息融合的换流站直流设备健康状态决策树评价模型。使用同质多传感器多信息数据融合方法对多信息实施融合处理;利用k近邻方法和层次聚类方法划分换流站直流设备健康状态量,提取健康状态量的有效信息作为输入,构建决策树评价模型,输出换流站直流设备健康状态评价结果。实验结果表明,该模型具备较好的多信息融合能力和样本均衡能力,且可从不同角度实现换流站直流设备健康状态评价,评价结果较为准确。 展开更多
关键词 多信息融合 换流站 直流设备 健康状态 决策树 评价模型
下载PDF
基于GBDT算法的基桩竖向承载力预测方法
17
作者 徐志军 赵世鹏 +2 位作者 王政权 田江涛 宗飞龙 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期186-193,共8页
目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗... 目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗震指标。结果结果表明:试件破坏过程明显经历了弹性段、塑性段、破坏段三个阶段,试件破坏模式主要为支撑受压失稳破坏,塑性变形主要累积在支撑体系上,整体呈现延性破坏特征;支撑断裂后,梁柱及T型钢节点无明显塑性变形,钢框架仍具有较高的安全储备,符合“强节点、弱构件”设计原则,表明了结构具有两道抗震防线;结论支撑与半刚接钢框架协同工作使得试件具有较高的抗侧刚度抵抗水平变形,且承载力较高、滞回性能稳定、耗能能力优良;单边螺栓在试验过程中的受力性能较普通高强螺栓并无较大差别,未出现严重的预紧力松弛现象,并能高效的保持螺栓预紧力。通过有限元数值模拟分析可知,减小支撑长细比,虽能有效提高结构的抗震性能,但长细比较小会导致支撑刚度增大,加速其余构件的损坏。故应以考虑结构的延性为前提,降低支撑的长细比,才能有效提高结构的抗震性能。 展开更多
关键词 基桩竖向承载力 梯度提升决策树 预测模型 评价指标 鲁棒性
下载PDF
基于中孕期临床数据构建孕妇发生自发性早产的预测模型:一项单中心的回顾性研究
18
作者 黄晶 宁思婷 孔琳 《内科》 2024年第3期225-231,共7页
目的 基于中孕期临床数据分析孕妇发生自发性早产(SPB)的影响因素,并建立预测模型。方法 回顾性分析1 051名孕妇的临床资料,其中分娩时孕周<37周的孕妇为SPB组,≥37周的孕妇为足月组。使用多因素logistic回归模型探究孕妇发生SPB的... 目的 基于中孕期临床数据分析孕妇发生自发性早产(SPB)的影响因素,并建立预测模型。方法 回顾性分析1 051名孕妇的临床资料,其中分娩时孕周<37周的孕妇为SPB组,≥37周的孕妇为足月组。使用多因素logistic回归模型探究孕妇发生SPB的影响因素。按照7∶3的比例将孕妇随机分成训练集和验证集,采用决策树算法建立孕妇发生SPB的预测模型,并采用受试者操作特征(ROC)曲线评估模型预测性能。结果 多因素分析结果显示,分娩时年龄(OR=1.070,95%CI:1.001~1.144)、孕次(OR=1.888,95%CI:1.023~3.485),以及孕中期白细胞计数(OR=1.144,95%CI:1.026~1.276)、中性粒细胞与淋巴细胞比值(NLR)(OR=1.603,95%CI:1.152~2.232)、胎儿纤维连接蛋白(fFN)(OR=6.961,95%CI:3.740~12.955)、阴道清洁度(OR=6.673,95%CI:3.661~12.161)均是孕妇发生SPB的影响因素(均P<0.05)。训练集与验证集的决策树模型ROC曲线下面积分别为0.796(95%CI:0.720~0.871)和0.786(95%CI:0.658~0.913),准确度分别为93.99%和94.83%。Delong检验显示,验证集决策树模型ROC曲线下积与训练集决策树模型差异无统计学意义(D=0.126,P=0.786),提示模型预测效能较好。结论 分娩时年龄、孕次,以及孕中期白细胞计数和NLR水平、fFN、阴道清洁度均是孕妇发生SPB的影响因素,基于这些因素构建的决策树模型,预测性能较好,可为临床实现孕妇发生SPB风险的个性化的预测提供参考。 展开更多
关键词 早产 孕中期 影响因素 中性粒细胞与淋巴细胞比值 决策树 预测 模型
下载PDF
基于决策树模型的罗湖区人工流产方式流行病学特征及影响因素研究
19
作者 袁清连 古聪慧 +1 位作者 毛静 喻意美 《全科护理》 2024年第4期739-742,共4页
目的:探讨基于决策树模型的罗湖区人工流产方式的流行病学特征及其影响因素。方法:回顾性纳入深圳罗湖区医院集团所属医疗机构在2021年9月—2022年10月收治的人工流产女性共9 245例,根据人工流产方式将其划分为药物组(2 004例)和手术组(... 目的:探讨基于决策树模型的罗湖区人工流产方式的流行病学特征及其影响因素。方法:回顾性纳入深圳罗湖区医院集团所属医疗机构在2021年9月—2022年10月收治的人工流产女性共9 245例,根据人工流产方式将其划分为药物组(2 004例)和手术组(7 241例),进行数据分析和结果评估。采用单因素和多因素法对人工流产方式的流行病学特征进行分析,确定影响人工流产方式选择的独立因素;同时基于决策树模型评估药物组和手术组两种人工流产方式的优缺点。结果:单因素分析结果显示,孕周、年龄、人工流产方式偏好情况、受教育程度、婚姻状况及生育情况均可能与人工流产方式选择有关(P<0.05)。多因素分析结果显示,孕周、年龄、人工流产方式偏好情况、受教育程度及生育情况是影响人工流产方式选择的独立因素(P<0.05)。决策树模型构建结果显示,孕周、人工流产方式偏好情况、婚姻状况及生育情况可直接影响人工流产方式选择,其中人工流产方式偏好情况影响最为显著。决策树模型预测分类与真实分类基本一致,模型预测错误率为10.00%,说明决策树模型的预测错误率与Logistic回归模型相同,均为10.00%,表明该模型具有良好的拟合度。结论:罗湖区人工流产方式选择受孕周、人工流产方式偏好情况、婚姻状况及生育情况等因素影响。其中,人工流产方式偏好情况对人工流产方式选择的影响最为显著。这些发现有助于优化人工流产的个体化治疗策略,提高人工流产个体的医疗体验和治疗效果。 展开更多
关键词 决策树模型 人工流产 流行病学 影响因素
下载PDF
腰椎间盘突出症病人术后发生恐动症的影响因素
20
作者 李晓红 陈娟娟 《循证护理》 2024年第14期2610-2615,共6页
目的:探讨腰椎间盘突出症(LDH)病人术后发生恐动症的危险因素,并基于Logistic回归模型和决策树模型建立LDH病人术后发生恐动症的风险预测模型。方法:回顾性分析2021年3月—2022年8月在我院行手术治疗的355例LDH病人的临床资料,根据病人... 目的:探讨腰椎间盘突出症(LDH)病人术后发生恐动症的危险因素,并基于Logistic回归模型和决策树模型建立LDH病人术后发生恐动症的风险预测模型。方法:回顾性分析2021年3月—2022年8月在我院行手术治疗的355例LDH病人的临床资料,根据病人术后是否发生恐动症分为恐动症组和非恐动症组,采用多因素Logistic回归分析筛选LDH病人术后发生恐动症的危险因素,运用SPSS Modeler软件建立预测LDH病人术后发生恐动症的决策树模型,并分析模型的预测效能。结果:本研究恐动症发生率为37.46%;恐动症组和非恐动症组病人受教育程度、疼痛视觉模拟评分(VAS)、医院焦虑抑郁量表(HADS)评分、自我效能、家庭人均月收入以及医疗费用支付方式比较,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,受教育程度、VAS评分、HADS评分、自我效能、家庭人均月收入以及医疗费用支付方式均为LDH病人术后发生恐动症的独立危险因素(P<0.05)。决策树结果显示,自我效能是LDH病人术后发生恐动症的主要危险因素,其次为医疗费用支付方式、VAS评分、HADS评分以及家庭人均月收入;受试者工作特征曲线(ROC)显示,决策树模型的预测能力高于多因素Logistic回归分析(P<0.05)。结论:受教育程度、VAS评分、HADS评分、自我效能、家庭人均月收入以及医疗费用支付方式为LDH病人术后发生恐动症的独立危险因素,医务人员可结合上述模型从不同层面发现LDH病人术后发生恐动症的影响因素,有助于评估病人病情,及时给予相应的干预指导。 展开更多
关键词 腰椎间盘突出症 恐动症 多因素Logistic回归模型 决策树模型 影响因素
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部