The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra...This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.展开更多
Introduction: As far as adult and married women were concerned, when they occurred to “unplanned pregnancy”, they felt so surprised and concussive all the time. Besides, the unplanned pregnancy also affects the othe...Introduction: As far as adult and married women were concerned, when they occurred to “unplanned pregnancy”, they felt so surprised and concussive all the time. Besides, the unplanned pregnancy also affects the other members in the family system. Therefore, when married women have to face the choice: “birth” or “abortion”, they’ll consider lots of thoughts and different decision criteria and decision pattern under various influences on physician, mind, mental and society. The purpose of this study was to investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. Methods: The study uses the method—“Ethnographic Decision Tree Modeling” [1] to build model of the decision criteria and decision patterns involved when adult married women make a decision about their unplanned pregnancy. There are three process in the research method: “Pilot Study”—interview two groups, every group distinct 4 married adult women with unplanned pregnancies, which decide whether to terminate or continue an unplanned pregnancy, what is the items of decision characters affect to the choice: “birth” or “abortion”. “Building of the Model”, displays the importance in proper order of those items and build the modeling with these two groups of women. “Testing of the Model”: investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. The study interviewed 34 married adult women with 43 unplanned pregnancies totally. Results: The result of the study finds out 12 items of decision characters, including planning to get pregnant or not, stability of feelings for married partner, the points of view on life, was affected by mother, mother-in-law, an husband’s emphasis on male, the meanings of children, the financial burden, the plan an assignment of career and time, the past pregnant experiences, the status of raising children, the health of parents and fetus, the effect of living environment, and social and cultural vision. Besides, there are four decision patterns of married adult women with unplanned pregnancy are “receiving abortion positively”;“giving birth as long as getting pregnancy naturally”;“ the minds are hesitative and changeable”, and “being forced by important others.” Conclusion: By setting the decision model tree, we found several decision criteria and patterns, and possible modes actions to be taken, could offer to see the adult married women’s decision-making and struggles in mind about unplanned pregnancy.展开更多
Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential dis...Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential distributions and its modifications namely;Parameter proportion hazard (PH) and Accelerated failure time models (AFT) and their effectiveness in modeling the state holding time in Markov modeling of HIV/AIDS progression with and without risk factors. Patients were categorized by gender and age with female gender being the baseline. Data simulated using R software was fitted to each model, and the model parameters were estimated. The estimated P and Z values were then used to test the null hypothesis that the state waiting time data followed an Exponential distribution. Model identification criteria;Akaike information criteria (AIC), Bayesian information criteria (BIC), log-likelihood (LL), and R2 were used to evaluate the performance of the models. For the Survival Regression model, P and Z values supported the non-rejection of the null hypothesis for mixed gender without interaction and supported the rejection of the same for mixed gender with interaction term and males aged 50 - 60 years. Both Parameters supported the non-rejection of the null hypothesis in the rest of the age groups. For Gender male with interaction both P and Z values supported rejection in all the age groups except the age group 20 - 30 years. For Cox Proportional hazard and AFT models, both P and Z values supported the non-rejection of the null hypothesis across all age groups. The P-values for the three models supported different decisions for and against the Null hypothesis with AFT and Cox values supporting similar decisions in most of the age groups. Among the models considered, the regression assumption provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identification criteria. This was particularly evident in age and gender subgroups where the data exhibited non-proportional hazards and violated the assumptions required for the Cox Proportional Hazard model. Moreover, the simplicity of the regression model, along with its ability to capture essential state transitions without over fitting, made it a more appropriate choice.展开更多
As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modell...As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.展开更多
Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose...Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose private model details when hosting their models in the cloud.Due to the time and monetary investments associated with model training,model providers may be reluctant to host their models in the cloud due to these privacy concerns.Furthermore,clients may be reluctant to use these outsourced models because their private queries or their results may be disclosed to the cloud servers.In this paper,we propose BloomDT,a privacy-preserving scheme for decision tree inference,which uses Bloom filters to hide the original decision tree's structure,the threshold values of each node,and the order in which features are tested while maintaining reliable classification results that are secure even if the cloud servers collude.Our scheme's security and performance are verified through rigorous testing and analysis.展开更多
Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent ...Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weatherrelated crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions.展开更多
Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurat...Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.展开更多
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ...This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.展开更多
目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根...目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根据妊娠结局分为妊娠成功组(215例)和妊娠失败组(135例)。收集患者临床资料,建立IVF-ET患者妊娠结局Logistic回归和决策树预测模型,并在是否基于Logistic回归结果条件下建立决策树分析模型(决策树1和决策树2),采用受试者工作特征(receiver operating characteristic,ROC)曲线对模型预测效果进行评价。结果:350例患者中,妊娠成功患者占61.43%,妊娠失败者占38.57%。妊娠失败组年龄≥35岁、不孕年限≥5年、周期次数≥1次、有心理精神障碍的患者比例及HCG日血清孕酮水平均高于妊娠成功组,获卵数≥10枚、受精率≥75%的患者比例及HCG日子宫内膜厚度、优质胚胎数小于妊娠成功组(P<0.05)。多因素Logistic回归分析结果显示,年龄、HCG日血清孕酮水平、优质胚胎数及心理精神障碍均是IVF-ET患者妊娠结局的影响因素(P<0.05)。决策树模型显示,年龄、HCG日血清孕酮水平、优质胚胎数为IVF-ET患者妊娠结局的影响因素。Logistic回归模型曲线下面积(area under curve,AUC)为0.832,预测敏感度、特异度和准确度分别为87.3%、71.4%、83.5%;决策树1的AUC为0.859,预测敏感度、特异度和准确度分别为85.1%、76.8%、85.6%;决策树2的AUC为0.820,预测敏感度、特异度和准确度分别为83.7%、73.2%、82.4%。决策树1的AUC大于决策树2(P<0.05),但与Logistic回归模型的AUC比较差异无统计学意义(P>0.05)。结论:Logistic回归模型和决策树模型对于IVF-ET患者妊娠结局均有一定的预测价值。展开更多
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金Project supported by the National Natural Science Foundation ofChina (No. 40101014) and by the Science and technology Committee of Zhejiang Province (No. 001110445) China
文摘This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.
文摘Introduction: As far as adult and married women were concerned, when they occurred to “unplanned pregnancy”, they felt so surprised and concussive all the time. Besides, the unplanned pregnancy also affects the other members in the family system. Therefore, when married women have to face the choice: “birth” or “abortion”, they’ll consider lots of thoughts and different decision criteria and decision pattern under various influences on physician, mind, mental and society. The purpose of this study was to investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. Methods: The study uses the method—“Ethnographic Decision Tree Modeling” [1] to build model of the decision criteria and decision patterns involved when adult married women make a decision about their unplanned pregnancy. There are three process in the research method: “Pilot Study”—interview two groups, every group distinct 4 married adult women with unplanned pregnancies, which decide whether to terminate or continue an unplanned pregnancy, what is the items of decision characters affect to the choice: “birth” or “abortion”. “Building of the Model”, displays the importance in proper order of those items and build the modeling with these two groups of women. “Testing of the Model”: investigate the criteria considered and the decision patterns involved when adult married women decide whether to terminate or continue an unplanned pregnancy. The study interviewed 34 married adult women with 43 unplanned pregnancies totally. Results: The result of the study finds out 12 items of decision characters, including planning to get pregnant or not, stability of feelings for married partner, the points of view on life, was affected by mother, mother-in-law, an husband’s emphasis on male, the meanings of children, the financial burden, the plan an assignment of career and time, the past pregnant experiences, the status of raising children, the health of parents and fetus, the effect of living environment, and social and cultural vision. Besides, there are four decision patterns of married adult women with unplanned pregnancy are “receiving abortion positively”;“giving birth as long as getting pregnancy naturally”;“ the minds are hesitative and changeable”, and “being forced by important others.” Conclusion: By setting the decision model tree, we found several decision criteria and patterns, and possible modes actions to be taken, could offer to see the adult married women’s decision-making and struggles in mind about unplanned pregnancy.
文摘Markov modeling of HIV/AIDS progression was done under the assumption that the state holding time (waiting time) had a constant hazard. This paper discusses the properties of the hazard function of the Exponential distributions and its modifications namely;Parameter proportion hazard (PH) and Accelerated failure time models (AFT) and their effectiveness in modeling the state holding time in Markov modeling of HIV/AIDS progression with and without risk factors. Patients were categorized by gender and age with female gender being the baseline. Data simulated using R software was fitted to each model, and the model parameters were estimated. The estimated P and Z values were then used to test the null hypothesis that the state waiting time data followed an Exponential distribution. Model identification criteria;Akaike information criteria (AIC), Bayesian information criteria (BIC), log-likelihood (LL), and R2 were used to evaluate the performance of the models. For the Survival Regression model, P and Z values supported the non-rejection of the null hypothesis for mixed gender without interaction and supported the rejection of the same for mixed gender with interaction term and males aged 50 - 60 years. Both Parameters supported the non-rejection of the null hypothesis in the rest of the age groups. For Gender male with interaction both P and Z values supported rejection in all the age groups except the age group 20 - 30 years. For Cox Proportional hazard and AFT models, both P and Z values supported the non-rejection of the null hypothesis across all age groups. The P-values for the three models supported different decisions for and against the Null hypothesis with AFT and Cox values supporting similar decisions in most of the age groups. Among the models considered, the regression assumption provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identification criteria. This was particularly evident in age and gender subgroups where the data exhibited non-proportional hazards and violated the assumptions required for the Cox Proportional Hazard model. Moreover, the simplicity of the regression model, along with its ability to capture essential state transitions without over fitting, made it a more appropriate choice.
基金Supported by a grant from the German Federal Ministry of Education and Research,No.01EO1302
文摘As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.
基金supported by collaborative research funding from the National Research Council of Canada's Aging in Place Challenge Program.
文摘Outsourcing decision tree models to cloud servers can allow model providers to distribute their models at scale without purchasing dedicated hardware for model hosting.However,model providers may be forced to disclose private model details when hosting their models in the cloud.Due to the time and monetary investments associated with model training,model providers may be reluctant to host their models in the cloud due to these privacy concerns.Furthermore,clients may be reluctant to use these outsourced models because their private queries or their results may be disclosed to the cloud servers.In this paper,we propose BloomDT,a privacy-preserving scheme for decision tree inference,which uses Bloom filters to hide the original decision tree's structure,the threshold values of each node,and the order in which features are tested while maintaining reliable classification results that are secure even if the cloud servers collude.Our scheme's security and performance are verified through rigorous testing and analysis.
基金sponsored by the Federal Highway Administration(FHWA)in cooperation with the American Association of State Highway and Transportation Officials(AASHTO)
文摘Identifying risk factors for road traffic injuries can be considered one of the main priorities of transportation agencies. More than 12,000 fatal work zone crashes were reported between 2000 and 2013. Despite recent efforts to improve work zone safety, the frequency and severity of work zone crashes are still a big concern for transportation agencies. Although many studies have been conducted on different work zone safety-related issues, there is a lack of studies that investigate the effect of adverse weather conditions on work zone crash severity. This paper utilizes probit–classification tree, a relatively recent and promising combination of machine learning technique and conventional parametric model, to identify factors affecting work zone crash severity in adverse weather conditions using 8 years of work zone weatherrelated crashes (2006–2013) in Washington State. The key strength of this technique lies in its capability to alleviate the shortcomings of both parametric and nonparametric models. The results showed that both presence of traffic control device and lighting conditions are significant interacting variables in the developed complementary crash severity model for work zone weather-related crashes. Therefore, transportation agencies and contractors need to invest more in lighting equipment and better traffic control strategies at work zones, specifically during adverse weather conditions.
基金supported by the Key Project-subtopic of thea13th FiveYear PlanoMilitary Logistics Service Research of China (BWS16J006)。
文摘Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.
文摘This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.
文摘目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根据妊娠结局分为妊娠成功组(215例)和妊娠失败组(135例)。收集患者临床资料,建立IVF-ET患者妊娠结局Logistic回归和决策树预测模型,并在是否基于Logistic回归结果条件下建立决策树分析模型(决策树1和决策树2),采用受试者工作特征(receiver operating characteristic,ROC)曲线对模型预测效果进行评价。结果:350例患者中,妊娠成功患者占61.43%,妊娠失败者占38.57%。妊娠失败组年龄≥35岁、不孕年限≥5年、周期次数≥1次、有心理精神障碍的患者比例及HCG日血清孕酮水平均高于妊娠成功组,获卵数≥10枚、受精率≥75%的患者比例及HCG日子宫内膜厚度、优质胚胎数小于妊娠成功组(P<0.05)。多因素Logistic回归分析结果显示,年龄、HCG日血清孕酮水平、优质胚胎数及心理精神障碍均是IVF-ET患者妊娠结局的影响因素(P<0.05)。决策树模型显示,年龄、HCG日血清孕酮水平、优质胚胎数为IVF-ET患者妊娠结局的影响因素。Logistic回归模型曲线下面积(area under curve,AUC)为0.832,预测敏感度、特异度和准确度分别为87.3%、71.4%、83.5%;决策树1的AUC为0.859,预测敏感度、特异度和准确度分别为85.1%、76.8%、85.6%;决策树2的AUC为0.820,预测敏感度、特异度和准确度分别为83.7%、73.2%、82.4%。决策树1的AUC大于决策树2(P<0.05),但与Logistic回归模型的AUC比较差异无统计学意义(P>0.05)。结论:Logistic回归模型和决策树模型对于IVF-ET患者妊娠结局均有一定的预测价值。