Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
Undergraduate graduation design is an important link in the process of undergraduate training,and university platforms have invested a lot of manpower and material resources for this purpose.However,while carrying out...Undergraduate graduation design is an important link in the process of undergraduate training,and university platforms have invested a lot of manpower and material resources for this purpose.However,while carrying out student training,it has gradually become the consensus of most university platforms to achieve a win-win situation for teachers and training platforms in order to achieve optimization of resource allocation and motivation of student training.After discussion and practice,this paper proposes a set of undergraduate graduation design training concepts and training modes with a win-win situation for students,teachers,and training platforms.展开更多
This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijia...This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While p...This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.展开更多
A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12...A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12)](AlTi_(2))+5[Al_(0.8)Si_(0.2)-Ti_(12)Zr_(2)](V_(0.8)Mo_(0.2)Nb_(1)Ti)features an enhancedβ-Ti via co-alloying of Zr,V,Mo,Nb and Si.The experimental results show that the cluster formula ofαandβphases in the novel alloy are respectivelyα-[Al-Ti_(11.5)Zr_(0.5)](Al_(1)Ti_(2))andβ-[Al_(0.8)Si_(0.2)-Ti_(13.2)Zr_(0.8)](V_(1)Mo_(0.4)Nb_(1.6)),both containing Zr elements.The fitted composition via the α andβphase cluster formulas has little difference with the actual alloy composition,suggesting that the validity of cluster-plus-glue-atom model in the alloy composition design.After hot isostatic pressing(HIP),both the Ti-6Al-4V and the novel alloy by LMD are characterized by prior-βcolumnar grains,while the typical<100>texture disappears.Compared with Ti-6Al-4V,Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy exhibits a combination of higher strength(1,056 MPa)and higher ductility(14%)at room temperature and higher strength(580 MPa)at 550℃ after HIP,and can potentially serves as LMD materials.展开更多
This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine ...This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.展开更多
The human gut microbiota is widely considered to be a metabolic organ hidden within our bodies,playing a crucial role in the host’s physiology.Several factors affect its composition,so a wide variety of microbes resi...The human gut microbiota is widely considered to be a metabolic organ hidden within our bodies,playing a crucial role in the host’s physiology.Several factors affect its composition,so a wide variety of microbes residing in the gut are present in the world population.Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies,and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed.In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns,community composition,and host-microbe interactions.Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with.In this review,we will describe the overall elements required to create a functioning,reproducible,and accurate in vitro culture of the human gut microbiota.In addition,we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.展开更多
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas...While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.展开更多
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
基金Hebei Provincial Department of Science and Technology Youth Science Fund Project(Project number:C2022407007)。
文摘Undergraduate graduation design is an important link in the process of undergraduate training,and university platforms have invested a lot of manpower and material resources for this purpose.However,while carrying out student training,it has gradually become the consensus of most university platforms to achieve a win-win situation for teachers and training platforms in order to achieve optimization of resource allocation and motivation of student training.After discussion and practice,this paper proposes a set of undergraduate graduation design training concepts and training modes with a win-win situation for students,teachers,and training platforms.
文摘This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
文摘This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.
基金supported by the Natural Science Foundation of Shenyang,China(Grant No.22315605).
文摘A novel Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy was designed using the cluster formula approach(cluster-plus-glue-atom model)and prepared by laser melting deposition(LMD).Its composition formula 12[Al-Ti_(12)](AlTi_(2))+5[Al_(0.8)Si_(0.2)-Ti_(12)Zr_(2)](V_(0.8)Mo_(0.2)Nb_(1)Ti)features an enhancedβ-Ti via co-alloying of Zr,V,Mo,Nb and Si.The experimental results show that the cluster formula ofαandβphases in the novel alloy are respectivelyα-[Al-Ti_(11.5)Zr_(0.5)](Al_(1)Ti_(2))andβ-[Al_(0.8)Si_(0.2)-Ti_(13.2)Zr_(0.8)](V_(1)Mo_(0.4)Nb_(1.6)),both containing Zr elements.The fitted composition via the α andβphase cluster formulas has little difference with the actual alloy composition,suggesting that the validity of cluster-plus-glue-atom model in the alloy composition design.After hot isostatic pressing(HIP),both the Ti-6Al-4V and the novel alloy by LMD are characterized by prior-βcolumnar grains,while the typical<100>texture disappears.Compared with Ti-6Al-4V,Ti-5.55Al-6.70Zr-1.50V-0.70Mo-3.41Nb-0.21Si alloy exhibits a combination of higher strength(1,056 MPa)and higher ductility(14%)at room temperature and higher strength(580 MPa)at 550℃ after HIP,and can potentially serves as LMD materials.
文摘This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.
基金supported by the BIOMEMBRANE project (M-ERA.net 2 project 4246)the KERAPACK project (MANUNET MNET 17/NMAT-0060)+2 种基金the PRA_2018_68 (grant supported by the University of Pisa)MIT-UNIPI project (grant supported by the University of Pisa and the MIT)the support of the Additive Manufacturing Cross-Lab of the Department of Information Engineering of the University of Pisa
文摘The human gut microbiota is widely considered to be a metabolic organ hidden within our bodies,playing a crucial role in the host’s physiology.Several factors affect its composition,so a wide variety of microbes residing in the gut are present in the world population.Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies,and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed.In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns,community composition,and host-microbe interactions.Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with.In this review,we will describe the overall elements required to create a functioning,reproducible,and accurate in vitro culture of the human gut microbiota.In addition,we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1。
文摘While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.