Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b...Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.展开更多
The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary. This paper focuses on the variations of tidal level response ...The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary. This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary, as well as the impacts of upstream discharge on tidal level response, due to the sea-level rise of the East China Sea. Based on the Topex/Poseidon altimeter data obtained during the period 1993-2005, a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea. Two- dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches. In response to the sea-level rise, the tidal wave characteristics change slightly in nearshore areas outside the estuaries, involving the tidal range and the duration of flood and ebb tide. The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends. The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts, in which the tidal level response declines slightly. The rise of tidal level is 1-2.5 mm/a in the upper part, and 4-6 mm/a in the lower part. The stations of Jiangyin and Yanglin, as an example of the upper part and the lower part respectively, are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise. The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic fimction in the upper part. However, the relation is too complicated to be fitted in the lower part because of the tide dominance. For comparison purposes, hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993-2009 are adopted. In order to uniform the influence of upstream discharge on tidal level for a certain day each year, the hourly tidal level observations are corrected by the correlation between the increment of tidal level and the increment of daily mean upstream discharge. The rise of annual mean tidal level is evaluated. The resulting rise of tidal level at the stations of Xuliujing and Yanglin is 3.0 mm/a and 6.6 mm/a respectively, close to the rise of 5 mm/a according to the proposed relation between the rise of tidal level and the upstream discharge.展开更多
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201506002, CRA40: 40-year CMA global atmospheric reanalysis)the National Basic Research Program of China (Grant No. 2015CB953703)+1 种基金the Intergovernmental Key International S & T Innovation Cooperation Program (Grant No. 2016YFE0102400)the National Natural Science Foundation of China (Grant Nos. 41305052 & 41375139)
文摘Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.
基金supported by the State Key Development Program of Basic Research of China (Grant No. 2010CB429001)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009586812)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Coastal Development Conservancy) (PAPD)
文摘The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary. This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary, as well as the impacts of upstream discharge on tidal level response, due to the sea-level rise of the East China Sea. Based on the Topex/Poseidon altimeter data obtained during the period 1993-2005, a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea. Two- dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches. In response to the sea-level rise, the tidal wave characteristics change slightly in nearshore areas outside the estuaries, involving the tidal range and the duration of flood and ebb tide. The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends. The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts, in which the tidal level response declines slightly. The rise of tidal level is 1-2.5 mm/a in the upper part, and 4-6 mm/a in the lower part. The stations of Jiangyin and Yanglin, as an example of the upper part and the lower part respectively, are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise. The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic fimction in the upper part. However, the relation is too complicated to be fitted in the lower part because of the tide dominance. For comparison purposes, hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993-2009 are adopted. In order to uniform the influence of upstream discharge on tidal level for a certain day each year, the hourly tidal level observations are corrected by the correlation between the increment of tidal level and the increment of daily mean upstream discharge. The rise of annual mean tidal level is evaluated. The resulting rise of tidal level at the stations of Xuliujing and Yanglin is 3.0 mm/a and 6.6 mm/a respectively, close to the rise of 5 mm/a according to the proposed relation between the rise of tidal level and the upstream discharge.