Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran...Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.展开更多
A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which h...A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which has been implemented to the finite difference FLAC code as a constitutive FISH userdefined-model. Validation of the model has been studied on the basis of comparing the transitional failure modes in rock. It is shown that the model is capable of accurately simulating fracture distributions over entire brittle to ductile rock phases. The application of the model during longwall retreat simulation highlighted several caving characteristics relevant to varying geological condition. The distribution and behaviour of modelled fractures were both realistic and shown to provide an enhanced post failure analysis to geological structures in FLAC. Moreover, the model introduces new potential insight towards the failure analysis of more complicated problems. This is best suited towards improving safety and efficiency in mines through the prediction of various key fractures and caving characteristics of geological structures.展开更多
Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc es...Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.展开更多
This paper presents the derivation of an analytical model for a multi-queue nodes network router, which is referred to as the multi-queue nodes (mQN) model. In this model, expressions are derived to calculate two pe...This paper presents the derivation of an analytical model for a multi-queue nodes network router, which is referred to as the multi-queue nodes (mQN) model. In this model, expressions are derived to calculate two performance metrics, namely, the queue node and system utilization factors. In order to demonstrate the flexibility and effectiveness of the mQN model in analyzing the performance of an mQN network router, two scenarios are performed. These scenarios investigated the variation of queue nodes and system utilization factors against queue nodes dropping probability for various system sizes and packets arrival routing probabilities. The performed scenarios demonstrated that the mQN analytical model is more flexible and effective when compared with experimental tests and computer simulations in assessing the performance of an mQN network router.展开更多
The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction mo...The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.展开更多
城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该...城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。展开更多
文摘Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.
文摘A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which has been implemented to the finite difference FLAC code as a constitutive FISH userdefined-model. Validation of the model has been studied on the basis of comparing the transitional failure modes in rock. It is shown that the model is capable of accurately simulating fracture distributions over entire brittle to ductile rock phases. The application of the model during longwall retreat simulation highlighted several caving characteristics relevant to varying geological condition. The distribution and behaviour of modelled fractures were both realistic and shown to provide an enhanced post failure analysis to geological structures in FLAC. Moreover, the model introduces new potential insight towards the failure analysis of more complicated problems. This is best suited towards improving safety and efficiency in mines through the prediction of various key fractures and caving characteristics of geological structures.
文摘Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.
文摘This paper presents the derivation of an analytical model for a multi-queue nodes network router, which is referred to as the multi-queue nodes (mQN) model. In this model, expressions are derived to calculate two performance metrics, namely, the queue node and system utilization factors. In order to demonstrate the flexibility and effectiveness of the mQN model in analyzing the performance of an mQN network router, two scenarios are performed. These scenarios investigated the variation of queue nodes and system utilization factors against queue nodes dropping probability for various system sizes and packets arrival routing probabilities. The performed scenarios demonstrated that the mQN analytical model is more flexible and effective when compared with experimental tests and computer simulations in assessing the performance of an mQN network router.
文摘The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.
文摘城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。