In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying princi...Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.展开更多
The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation...The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation, we analyse the stationary probability distribution and the mean first-passage time of this model. By numerical analysis, the effects of the self-correlation time of insect birth rate and predation rate respectively reveal a manifest population divergence on the insect density. The decrease of the mean first-passage time indicates an enhancement dynamic on the density divergency with colored noise of a large self-correlation time based on the insect outbreak model.展开更多
During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake ...During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake capture and Added Mass Effect (AME) mechanisms. To study the AME, we present an extended unsteady blade element model which takes both the added mass of fluid and rotational effect of the wing into account. Simulation results show a high force peak at the start of each stroke and are quite similar to the measured forces on the physical wing model. We found that although the Added Mass Force (AMF) of the medium contributes a lot to this force peak, the wake capture effect further augments this force and may play a more important role in delayed mode. Furthermore, we also found that there might be an unknown mechanism which may augment the AME during acceleration period at the start of each stroke, and diminish the AME during deceleration at the end of each stroke.展开更多
The Sterile Insect Technique (SIT) is a powerful biological tool to control pest-populations. It could be integrated in management programmes of the Red Palm Weevil (RPW) Rhynchophorus ferrugineus Olivier. This pest t...The Sterile Insect Technique (SIT) is a powerful biological tool to control pest-populations. It could be integrated in management programmes of the Red Palm Weevil (RPW) Rhynchophorus ferrugineus Olivier. This pest threatens seriously date palms particularly in Saudi Arabia. As a matter of fact, the use of SIT has been very efficient in controlling RPW populations in coconut gardens in various countries. In this work, we outline the extinction conditions of a target wild-population using a one-sided competition model to describe its competition with released sterile insects. We employ a Holling type I functional response to describe the sterile-fertile one-sided competition and we consider two intra-specific competition sub-models, with and without Allee Effect, in modelling the growth of the wild-type population. We also study two manners of liberating sterile insects: single and periodic release strategies.展开更多
Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a chan...Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.展开更多
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves ...In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion.展开更多
Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause s...Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause severe defoliation in many forest stands in Europe. In order to better understand the spatio-temporal dynamics and elucidate possible influences of weather, stand and site conditions, a generalized additive mixed model was developed. The investigated data base was derived from glue band catch monitoring stands of both species in Central and North Germany. From the glue bands only female moth individuals are counted and a hazard code is calculated. The model can be employed to predict the exceedance of a warning threshold of this hazard code which indicates a potential severe defoliation of oak stands by winter moth and mottled umber in the coming spring.Results: The developed model accounts for specific temporal structured effects for three large ecoregions and random effects at stand level. During variable selection the negative model effect of pest control and the positive model effects of mean daily minimum temperature in adult stage and precipitation in early pupal stage were identified.Conclusion: The developed model can be used for short-term predictions of potential defoliation risk in Central and North Germany. These predictions are sensitive to weather conditions and the population dynamics. However, a future extension of the data base comprising further outbreak years would allow for deeper investigation of the temporal and regional patterns of the cyclic dynamics and their causal influences on abundance of winter moth and mottled umber.展开更多
To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of h...To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of human hepatoma cells BEL-7402 as template, the complementary DNA (cDNA) of CLA-1 was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Bac-to-Bac baculovirus expression system was used to express CLA-1 in insect cells. CLA-1 cDNA was cloned downstream of polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV) into donor vector pFastBacl and recombinant pFastBacl-CLA-1 was transformed into E. coli DH10Bac to transpose CLA-1 cDNA to bacrnid DNA. Recombinant bacrnid-CLA-1 was transfected into Spodopterafrugiperda Sf9 insect cells to produce recombinant baculovirus particles. Recombinant CLA- 1 was expressed on the membrane of Sf9 cells infected with the recombinant baculoviruses. A series of parameters of DiI-lipoprotein binding assays of CLA-1-expressing Sf9 cells in 96-well plates were optimized. Results Western blot analysis and DiI-lipoprotein binding assays confirmed that CLA-1 expressed in insect cells had similar immunoreactivity and ligand binding activity as its native counterpart. A reliable and sensitive in vitro cell-based assay was established to assess the activity of CLA-1 and used to screen agonists from different sample libraries. Conclusion Human HDL receptor CLA-1 was successfully expressed in Sf9 insect cells and a novel high-throughput screening model for CLA-1 agonists was developed. Utilization of this model allows us to identify potent and selective CLA-1 agonists which might possibly be used as therapeutics for atherosclerosis.展开更多
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweepin...The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweeping)at a large angle of attack and constant angular velocity.The Reynolds number(Re)considered in the present note is 480(Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root).During the constant-speed sweeping motion,the stall is absent and large and approximately constant lift and drag coefficients can be maintained.The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows.Soon after the initial start,a vortex ring,which consists of the leading-edge vortex(LEV),the starting vortex,and the two wing-tip vortices,is formed in the wake of the wing.During the subsequent motion of the wing,a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength.This prevents the LEV from shedding.As a result, the size of the vortex ring increases approximately linearly with time,resulting in an approximately constant time rate of the first moment of vorticity,or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wing- span.The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force.展开更多
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金Funded by the National Natural Science Foundation of China(Nos.31172144,51475204)the National Science&Technology Pillar Program of China in the Twelfth Five-Year Plan Period(2014BAD06B03)+1 种基金the Exchange Projects of the Royal Academy of Engineering,UK(Major Award,2010-2011)the "Project 985" of Jilin University
文摘Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.
基金Project supported by the Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. SJ08A12)the Science Foundation of the Education Bureau of Shaanxi Province,China (Grant No. 12JK0962)the Science Foundation of Baoji University of Science and Arts of China (Grant No. ZK11053)
文摘The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation, we analyse the stationary probability distribution and the mean first-passage time of this model. By numerical analysis, the effects of the self-correlation time of insect birth rate and predation rate respectively reveal a manifest population divergence on the insect density. The decrease of the mean first-passage time indicates an enhancement dynamic on the density divergency with colored noise of a large self-correlation time based on the insect outbreak model.
文摘During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake capture and Added Mass Effect (AME) mechanisms. To study the AME, we present an extended unsteady blade element model which takes both the added mass of fluid and rotational effect of the wing into account. Simulation results show a high force peak at the start of each stroke and are quite similar to the measured forces on the physical wing model. We found that although the Added Mass Force (AMF) of the medium contributes a lot to this force peak, the wake capture effect further augments this force and may play a more important role in delayed mode. Furthermore, we also found that there might be an unknown mechanism which may augment the AME during acceleration period at the start of each stroke, and diminish the AME during deceleration at the end of each stroke.
文摘The Sterile Insect Technique (SIT) is a powerful biological tool to control pest-populations. It could be integrated in management programmes of the Red Palm Weevil (RPW) Rhynchophorus ferrugineus Olivier. This pest threatens seriously date palms particularly in Saudi Arabia. As a matter of fact, the use of SIT has been very efficient in controlling RPW populations in coconut gardens in various countries. In this work, we outline the extinction conditions of a target wild-population using a one-sided competition model to describe its competition with released sterile insects. We employ a Holling type I functional response to describe the sterile-fertile one-sided competition and we consider two intra-specific competition sub-models, with and without Allee Effect, in modelling the growth of the wild-type population. We also study two manners of liberating sterile insects: single and periodic release strategies.
文摘Worldwide biodiversity is being threatened by human activities to a greater level wherein the natural ecosystems are reaching the verge of collapsing. We are faced with four major interrelated challenges namely a changing climate, biodiversity loss, human population growth and food production for this growing population. Agricultural intensification contributes significantly to biodiversity loss. The agricultural model for our current food production systems is mainly based on the Green Revolution, which promoted the cultivation of crops in extensive monoculture fields and intensified external inputs of agrochemicals. This model resulted in biodiversity loss, particularly in insect populations. A model based on ecological intensification as an alternative to agricultural intensification with minimized use of agro-inputs may slow the rate of biodiversity loss resulting in more sustainable agricultural ecosystems.
基金supported by the National Natural Science Foundation of China (10732030)the Foundation for the Author of National Excellent Doctoral Dissertation (2007B31)
文摘In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Naviertokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth's lateral motion.
基金part of DSS-RiskMan(FKZ:28WB401501)a project funded by the "Waldklimafonds"+1 种基金supported by the Federal Ministry of Food and Agriculturethe Federal Ministry of the Environment,Nature Conservation and Nuclear Safety
文摘Background: Winter moth(Operophtera brumata) and mottled umber moth(Erannis defoliaria) are forest Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they cause severe defoliation in many forest stands in Europe. In order to better understand the spatio-temporal dynamics and elucidate possible influences of weather, stand and site conditions, a generalized additive mixed model was developed. The investigated data base was derived from glue band catch monitoring stands of both species in Central and North Germany. From the glue bands only female moth individuals are counted and a hazard code is calculated. The model can be employed to predict the exceedance of a warning threshold of this hazard code which indicates a potential severe defoliation of oak stands by winter moth and mottled umber in the coming spring.Results: The developed model accounts for specific temporal structured effects for three large ecoregions and random effects at stand level. During variable selection the negative model effect of pest control and the positive model effects of mean daily minimum temperature in adult stage and precipitation in early pupal stage were identified.Conclusion: The developed model can be used for short-term predictions of potential defoliation risk in Central and North Germany. These predictions are sensitive to weather conditions and the population dynamics. However, a future extension of the data base comprising further outbreak years would allow for deeper investigation of the temporal and regional patterns of the cyclic dynamics and their causal influences on abundance of winter moth and mottled umber.
文摘To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of human hepatoma cells BEL-7402 as template, the complementary DNA (cDNA) of CLA-1 was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Bac-to-Bac baculovirus expression system was used to express CLA-1 in insect cells. CLA-1 cDNA was cloned downstream of polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV) into donor vector pFastBacl and recombinant pFastBacl-CLA-1 was transformed into E. coli DH10Bac to transpose CLA-1 cDNA to bacrnid DNA. Recombinant bacrnid-CLA-1 was transfected into Spodopterafrugiperda Sf9 insect cells to produce recombinant baculovirus particles. Recombinant CLA- 1 was expressed on the membrane of Sf9 cells infected with the recombinant baculoviruses. A series of parameters of DiI-lipoprotein binding assays of CLA-1-expressing Sf9 cells in 96-well plates were optimized. Results Western blot analysis and DiI-lipoprotein binding assays confirmed that CLA-1 expressed in insect cells had similar immunoreactivity and ligand binding activity as its native counterpart. A reliable and sensitive in vitro cell-based assay was established to assess the activity of CLA-1 and used to screen agonists from different sample libraries. Conclusion Human HDL receptor CLA-1 was successfully expressed in Sf9 insect cells and a novel high-throughput screening model for CLA-1 agonists was developed. Utilization of this model allows us to identify potent and selective CLA-1 agonists which might possibly be used as therapeutics for atherosclerosis.
基金The project supported by the National Natural Science Foundation of China(10232010)
文摘The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweeping)at a large angle of attack and constant angular velocity.The Reynolds number(Re)considered in the present note is 480(Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root).During the constant-speed sweeping motion,the stall is absent and large and approximately constant lift and drag coefficients can be maintained.The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows.Soon after the initial start,a vortex ring,which consists of the leading-edge vortex(LEV),the starting vortex,and the two wing-tip vortices,is formed in the wake of the wing.During the subsequent motion of the wing,a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength.This prevents the LEV from shedding.As a result, the size of the vortex ring increases approximately linearly with time,resulting in an approximately constant time rate of the first moment of vorticity,or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wing- span.The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force.
基金国家重点基础研究发展计划项目(2006CB102005)国家科技支撑计划项目(2008BADA5B03)+1 种基金supported by the C.T.de Wit Research School for Production Ecology and Resource Conservation,Wageningen University“973”program of China(2006CB102005)