The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must...In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary mod...The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary model identification idea, the multiinnovation stochastic gradient algorithm is developed to estimate the parameters of multirate systems. Finally, an illustrative example is given to verify the effectiveness of the proposed algorithm.展开更多
Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global r...Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global ranges as well as model complexities on the calibrationand uncertainty estimates. The primary purpose of this paper is to investigate these impacts byemploying Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM wasdesigned to explore the general aspects of land-surface energy balance representation within acommon modeling framework that can be run from a simple energy balance formulation to a complexmosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem,importance sampling, and very fast simulated annealing. The model forcing data and surface flux datawere collected at seven sites representing a wide range of climate and vegetation conditions. Foreach site, four experiments were performed with simple and complex CHASM formulations as well asrealistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parametersets were used for each run. The results show that the use of global and realistic ranges givessimilar simulations for both modes for most sites, but the global ranges tend to produce someunreasonable optimal parameter values. Comparison of simple and complex modes shows that the simplemode has more parameters with unreasonable optimal values. Use of parameter ranges and modelcomplexities have significant impacts on frequency distribution of parameters, marginal posteriorprobability density functions, and estimates of uncertainty of simulated sensible and latent heatfluxes. Comparison between model complexity and parameter ranges shows that the former has moresignificant impacts on parameter and uncertainty estimations.展开更多
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydrauli...A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-epsilon two equation turbulence model (SKE). It can be found from the estimation results that although the paramete...A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-epsilon two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is. difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-e two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out...According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.展开更多
Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond ar...Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond area to sea ice area in a model grid),and depth of melt ponds.However,this scheme has some uncertain parameters that affect melt pond simulations.These parameters could be determined through a conventional parameter estimation method,which requires a large number of sensitivity simulations.The adjoint model can calculate the parameter sensitivity efficiently.In the present research,an adjoint model was developed for the CESM(Community Earth System Model) melt pond scheme.A melt pond parameter estimation algorithm was then developed based on the CICE6.0 sea ice model,melt pond adjoint model,and L-BFGS(Limited-memory Broyden-Fletcher-Goldfard-Shanno) minimization algorithm.The parameter estimation algorithm was verified under idealized conditions.By using MODIS(Moderate Resolution Imaging Spectroradiometer)melt pond fraction observation as a constraint and the developed parameter estimation algorithm,the melt pond aspect ratio parameter in CESM scheme,which is defined as the ratio between pond depth and pond area fraction,was estimated every eight days during summertime for two different regions in the Arctic.One region was covered by multi-year ice(MYI) and the other by first-year ice(FYI).The estimated parameter was then used in simulations and the results show that:(1) the estimated parameter varies over time and is quite different for MYI and FYI;(2) the estimated parameter improved the simulation of the melt pond fraction.展开更多
This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Con...This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.展开更多
The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo...The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.展开更多
Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this...Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.展开更多
Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phas...Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.展开更多
A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filte...A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of展开更多
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
基金supported by the National Natural Science Foundation of China (60973043)
文摘The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary model identification idea, the multiinnovation stochastic gradient algorithm is developed to estimate the parameters of multirate systems. Finally, an illustrative example is given to verify the effectiveness of the proposed algorithm.
文摘Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global ranges as well as model complexities on the calibrationand uncertainty estimates. The primary purpose of this paper is to investigate these impacts byemploying Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM wasdesigned to explore the general aspects of land-surface energy balance representation within acommon modeling framework that can be run from a simple energy balance formulation to a complexmosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem,importance sampling, and very fast simulated annealing. The model forcing data and surface flux datawere collected at seven sites representing a wide range of climate and vegetation conditions. Foreach site, four experiments were performed with simple and complex CHASM formulations as well asrealistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parametersets were used for each run. The results show that the use of global and realistic ranges givessimilar simulations for both modes for most sites, but the global ranges tend to produce someunreasonable optimal parameter values. Comparison of simple and complex modes shows that the simplemode has more parameters with unreasonable optimal values. Use of parameter ranges and modelcomplexities have significant impacts on frequency distribution of parameters, marginal posteriorprobability density functions, and estimates of uncertainty of simulated sensible and latent heatfluxes. Comparison between model complexity and parameter ranges shows that the former has moresignificant impacts on parameter and uncertainty estimations.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
文摘A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-epsilon two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is. difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-e two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金the National Natural Science Foundation of China
文摘According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.
基金funded by the National Key R&D Program of China (Grant No.2018YFA0605904)。
文摘Melt ponds significantly affect Arctic sea ice thermodynamic processes.The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume,area fraction(the ratio between melt pond area to sea ice area in a model grid),and depth of melt ponds.However,this scheme has some uncertain parameters that affect melt pond simulations.These parameters could be determined through a conventional parameter estimation method,which requires a large number of sensitivity simulations.The adjoint model can calculate the parameter sensitivity efficiently.In the present research,an adjoint model was developed for the CESM(Community Earth System Model) melt pond scheme.A melt pond parameter estimation algorithm was then developed based on the CICE6.0 sea ice model,melt pond adjoint model,and L-BFGS(Limited-memory Broyden-Fletcher-Goldfard-Shanno) minimization algorithm.The parameter estimation algorithm was verified under idealized conditions.By using MODIS(Moderate Resolution Imaging Spectroradiometer)melt pond fraction observation as a constraint and the developed parameter estimation algorithm,the melt pond aspect ratio parameter in CESM scheme,which is defined as the ratio between pond depth and pond area fraction,was estimated every eight days during summertime for two different regions in the Arctic.One region was covered by multi-year ice(MYI) and the other by first-year ice(FYI).The estimated parameter was then used in simulations and the results show that:(1) the estimated parameter varies over time and is quite different for MYI and FYI;(2) the estimated parameter improved the simulation of the melt pond fraction.
基金Project(61673400)supported by the National Natural Science Foundation of ChinaProject(2015cx007)supported by the Innovation-driven Plan in Central South University,China+1 种基金Project(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProjects(61590921,61590923)supported by the Major Program of the National Natural Science Foundation of China
文摘This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.
基金This work was supported by the National Natural Science Foundation of China(61372033).
文摘The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.
文摘Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.
基金supported in part by the National Natural Science Founda⁃tion of China(NSFC)under Grant Nos.62301148,62341107,and 62261160576by the Natural Science Foundation of Jiangsu Prov⁃ince under Grant No.BK20230824in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Indus⁃try)under Grant Nos.BE2023022 and BE2023022-1.
文摘Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.
文摘A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of