期刊文献+
共找到848篇文章
< 1 2 43 >
每页显示 20 50 100
DC active power filter based on model predictive control for DC bus overvoltage suppression of accelerator grid power supply 被引量:1
1
作者 张鸿淇 朱帮友 +3 位作者 马少翔 李志恒 张明 潘垣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期1-13,共13页
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated... The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly. 展开更多
关键词 CFETR NBI accelerator grid power supply power active filter model predictive control
下载PDF
Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller
2
作者 He Wang Xiangsheng Xu +1 位作者 Guanye Shen Bian Jing 《Energy Engineering》 EI 2023年第10期2251-2272,共22页
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D... There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure. 展开更多
关键词 DC power flow controller model predictive control modular multi-level converter control strategy dynamic performance
下载PDF
Model Predictive Control-Based Direct Torque Control for Matrix Converter-Fed Induction Motor with Reduced Torque Ripple 被引量:7
3
作者 Hanbing Dan Peng Zeng +3 位作者 Wenjing Xiong Meng Wen Mei Su Marco Rivera 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第2期90-99,共10页
To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed ... To reduce the torque ripple in motors resulting from the use of conventional direct torque control(DTC),a model predictive control(MPC)-based DTC strategy for a direct matrix converter-fed induction motor is proposed in this paper.Two new look-up tables are proposed,these are derived on the basis of the control of the electromagnetic torque and stator flux using all the feasible voltage vectors and their associated switching states.Finite control set model predictive control(FCS-MPC)has then been adopted to select the optimal switching state that minimizes the cost function related to the electromagnetic torque.Finally,the experimental results are shown to verify the reduced torque ripple performance of the proposed MPC-based DTC method. 展开更多
关键词 direct torque control finite control set model predictive control induction motor matrix converter
下载PDF
Model-predictive control of power supply for particle accelerators 被引量:2
4
作者 钱湘萍 姚泽恩 王强 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第5期23-26,共4页
In this paper, model-predictive control(MPC) is proposed for controlling power source of accelerators. The system state equation is employed as the predictive model. With MPC, the difference between possible output an... In this paper, model-predictive control(MPC) is proposed for controlling power source of accelerators. The system state equation is employed as the predictive model. With MPC, the difference between possible output and the ideal output is forecasted and decreased, so that the system can trace the ideal trail as closely and quickly as possible. The results of simulations and experiments show that this method can reduce influence of low frequency noise. 展开更多
关键词 模型预测控制 粒子加速器 电源 预测模型 快速跟踪 低频噪声 MPC 系统
下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:16
5
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper prese... Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control(DMPC) based on coordination scheme.The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints(GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed–loop performance, and computational burden with the physical constraints. 展开更多
关键词 Distributed model predictive control(DMPC) doubly fed induction generator(DFIG) load frequency control(LFC)
下载PDF
Direct Model Predictive Control of Noninverting Buck-boost DC-DC Converter
6
作者 Basharat Ullah Hikmat Ullah Sumeet Khalid 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期332-339,共8页
In this paper, direct model predictive control(DMPC) of the noninverting buck-boost DC-DC converter with magnetic coupling between input and output is proposed. Unlike most of the other converters, the subject convert... In this paper, direct model predictive control(DMPC) of the noninverting buck-boost DC-DC converter with magnetic coupling between input and output is proposed. Unlike most of the other converters, the subject converter has the advantage of exhibiting minimum phase behavior in the boost mode. However, a major issue that arises in the classical control of the converter is the dead zone near the transition of the buck and boost mode. The reason for the dead zone is practically unrealizable duty cycles, which are close to zero or unity, of pulse width modulation(PWM) near the transition region. To overcome this issue, we propose to use DMPC. In DMPC, the switches are manipulated directly by the controller without the need of PWM.Thereby, avoiding the dead zone altogether. DMPC also offers several other advantages over classical techniques that include optimality and explicit current constraints. Simulations of the proposed DMPC technique on the converter show that the dead zone has been successfully avoided. Moreover, simulations show that the DMPC technique results in a significantly improved performance as compared to the classical control techniques in terms of response time, reference tracking, and overshoot. 展开更多
关键词 Noninverting buck-boost DC-DC converter direct model predictive control Dead zone avoidance
下载PDF
Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) with Online Parameter Estimation Based on Extended Kalman Filter
7
作者 Gang Yang Xiao Jiang Shuaishuai Lv 《International Journal of Communications, Network and System Sciences》 2022年第7期79-93,共15页
Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimati... Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM). 展开更多
关键词 model predictive direct Torque control Extended Kalman Filter Parameter Estimation Permanent Magnet Synchronous Motor Filter’s Stability
下载PDF
DISOPE distributed model predictive control of cascade systems with network communication 被引量:1
8
作者 Yan ZHANG Shaoyuan LI 《控制理论与应用(英文版)》 EI 2005年第2期131-138,共8页
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d... A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm. 展开更多
关键词 Cascade systems Dynamic integrated system optimization and parameter estimation (DISOPE) model predictive control (MPC) Distributed control system (DCS) Autonomous agents Fossil fuel power unit (FFPU)
下载PDF
Tube Model Predictive Control Based Cyber-attack-resilient Optimal Voltage Control Strategy in Wind Farms
9
作者 Zhenming Li Minghao Wang +4 位作者 Yunfeng Yan Donglian Qi Zhao Xu Jianliang Zhang Zezhou Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期530-538,共9页
Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and... Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids.In order to achieve optimal voltage operation,authentic grid information is widely needed in the sensing and actuating processes.However,this may induce system vulnerable to malicious cyber-attacks.To this end,a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks.The proposed method consists of two cascaded model predictive controllers(MPC),which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system.Finally,efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.Index Terms-Attack-resilient control,optimal voltage control,tube-based model predictive control,wind farm-connected power system. 展开更多
关键词 Attack-resilient control optimal voltage control tube-based model predictive control wind farm-connected power system
原文传递
Multi-timescale optimization scheduling of interconnected data centers based on model predictive control
10
作者 Xiao GUO Yanbo CHE +1 位作者 Zhihao ZHENG Jiulong SUN 《Frontiers in Energy》 SCIE EI CSCD 2024年第1期28-41,共14页
With the promotion of“dual carbon”strategy,data center(DC)access to high-penetration renewable energy sources(RESs)has become a trend in the industry.However,the uncertainty of RES poses challenges to the safe and s... With the promotion of“dual carbon”strategy,data center(DC)access to high-penetration renewable energy sources(RESs)has become a trend in the industry.However,the uncertainty of RES poses challenges to the safe and stable operation of DCs and power grids.In this paper,a multi-timescale optimal scheduling model is established for interconnected data centers(IDCs)based on model predictive control(MPC),including day-ahead optimization,intraday rolling optimization,and intraday real-time correction.The day-ahead optimization stage aims at the lowest operating cost,the rolling optimization stage aims at the lowest intraday economic cost,and the real-time correction aims at the lowest power fluctuation,eliminating the impact of prediction errors through coordinated multi-timescale optimization.The simulation results show that the economic loss is reduced by 19.6%,and the power fluctuation is decreased by 15.23%. 展开更多
关键词 model predictive control interconnected data center multi-timescale optimized scheduling distributed power supply/landscape uncertainty
原文传递
A Long-Range Generalized Predictive Control Algorithm for a DFIG Based Wind Energy System 被引量:1
11
作者 J.S.Solis-Chaves Lucas L.Rodrigues +1 位作者 C.M.Rocha-Osorio Alfeu J.Sguarezi Filho 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1209-1219,共11页
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations t... This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized. 展开更多
关键词 direct power control DOUBLY-FED INDUCTION generator flux oriented control generalized predictive control LONG-RANGE predictive control wind energy systems
下载PDF
Wind Farm Coordinated Control for Power Optimization 被引量:12
12
作者 SHU Jin HAO Zhiguo +1 位作者 ZHANG Baohui BO Zhiqian 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0002-I0002,4,共1页
以降低风电场尾流损失、优化风场出力为目标,设计基于Laguerre函数非线性预测控制(nonlinear modelpredictive control,NLMPC)方案的风场集群控制器。该控制器应用风场动态尾流模型,通过NLMPC统一调整风场内各机组转速以提升风场功率... 以降低风电场尾流损失、优化风场出力为目标,设计基于Laguerre函数非线性预测控制(nonlinear modelpredictive control,NLMPC)方案的风场集群控制器。该控制器应用风场动态尾流模型,通过NLMPC统一调整风场内各机组转速以提升风场功率。在控制器设计中,使用有效风速预测误差校正对预测模型失配及超短期风速预测误差进行补偿,引入Laguerre函数降低滚动时域优化计算负担并分析了控制器对风速预测误差的鲁棒性能。仿真研究表明,集群控制器能够在不同风速条件下提升风场功率、降低优化计算负担,且对风速预测模型失配与风场自然风速预测误差具有鲁棒性。 展开更多
关键词 英文摘要 内容介绍 编辑工作 期刊
下载PDF
PI-MPC Frequency Control of Power System in the Presence of DFIG Wind Turbines 被引量:1
13
作者 Michael Z. Bernard T. H. Mohamed +2 位作者 Raheel Ali Yasunori Mitani Yaser Soliman Qudaih 《Engineering(科研)》 2013年第9期43-50,共8页
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ... For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT. 展开更多
关键词 DOUBLY Fed Induction Generator power SYSTEM model predictive control) Proportional Integral controller DFIG WIND Turbine WIND Energy SYSTEM (WES)
下载PDF
Hierarchical Cluster Coordination Control Strategy for Large-scale Wind Power Based on Model Predictive Control and Improved Multi-time-scale Active Power Dispatching 被引量:1
14
作者 Ying Zhu Yanan Zhang Zhinong Wei 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期827-839,共13页
The grid-connection of large-scale and high-penetration wind power poses challenges to the friendly dispatching control of the power system.To coordinate the complicated optimal dispatching and rapid real-time control... The grid-connection of large-scale and high-penetration wind power poses challenges to the friendly dispatching control of the power system.To coordinate the complicated optimal dispatching and rapid real-time control,this paper proposes a hierarchical cluster coordination control(HCCC)strategy based on model predictive control(MPC)technique.Considering the time-varying characteristics of wind power generation,the proposed HCCC strategy constructs an improved multitime-scale active power dispatching model,which consists of five parts:formulation of cluster dispatching plan,rolling modification of intra-cluster plan,optimization allocation of wind farm(WF),grouping coordinated control of wind turbine group(WTG),and real-time adjustment of single-machine power.The time resolutions are sequentially given as 1 hour,30 min,15 min,5 min,and 1 min.In addition,a combined predictive model based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),wavelet thresholding(WT),and least squares support vector machine(LSSVM)is established.The fast predictive feature of this model cooperates with the HCCC strategy that effectively improves the predictive control precision.Simulation results show that the proposed HCCC strategy enables rapid response to active power control(APC),and significantly improves dispatching control accuracy and wind power accommodation capabilities. 展开更多
关键词 Wind power active power dispatching model predictive control(MPC) hierarchical control wind power prediction
原文传递
Coordinated voltage control of renewable energy power plants in weak sending-end power grid
15
作者 Yongning Chi Weihao Li +1 位作者 Qiuwei Wu Chao Liu 《Global Energy Interconnection》 2020年第4期365-374,共10页
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co... The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant. 展开更多
关键词 Coordinated voltage control model predictive control(MPC) Renewable energy Weak sending-end power grid Wind turbine generators(WTGs) Photovoltaic arrays(PVAs) STATCOM
下载PDF
Model predictive control of indoor thermal environment conditioned by a direct expansion air conditioning system
16
作者 Yudong Xia Ming Zhu +3 位作者 Aipeng Jiang Jian Wang Xiaoxia Bai Shiming Deng 《Building Simulation》 SCIE EI CSCD 2023年第3期357-378,共22页
Temperature and humidity are two important factors that influence both indoor thermal comfort and air quality.Through varying compressor and supply fan speeds of a direct expansion(DX)air conditioning(A/C)unit,the air... Temperature and humidity are two important factors that influence both indoor thermal comfort and air quality.Through varying compressor and supply fan speeds of a direct expansion(DX)air conditioning(A/C)unit,the air temperature and humidity in the conditioned space can be regulated simultaneously.However,most existing controllers are designed to minimize the tracking errors between the system outputs with their corresponding settings as quickly as possible.The energy consumption,which is directly influenced by the compressor and supply fan speeds,is not considered in the relevant controller formulations,and thus the system may not operate with the highest possible energy efficiency.To effectively control temperature and humidity while minimizing the system energy consumption,a model predictive control(MPC)strategy was developed for a DX A/C system,and the development results are presented in this paper.A physically-based dynamic model for the DX A/C system with both sensible and latent heat transfers being considered was established and validated by experiments.To facilitate the design of MPC,the physical model was further linearized.The MPC scheme was then developed by formulating the objective function which sought to minimize the tracking errors of temperature and moisture content while saving energy consumption.Based on the results of command following and disturbance rejection tests,the proposed MPC scheme was capable of controlling temperature and humidity with adequate control accuracy and sensitivity.In comparison to linear-quadratic-Gaussian(LQG)controller,better control accuracy and lower energy consumption could be realized when using the proposed MPC strategy to simultaneously control temperature and humidity. 展开更多
关键词 direct expansion air conditioning humidity control model predictive control variable speed operational efficiency
原文传递
基于并网逆变器的新型多代价函数MPDPC研究
17
作者 李磊 强耀东 +1 位作者 袁辉 傅洪全 《电子器件》 CAS 北大核心 2023年第3期849-853,共5页
模型预测直接功率控制方法简单,响应速度快,被广泛应用于并网逆变器系统。本文首先介绍了现有的模型预测直接功率控制的原理,建立了相对应的模型预测控制数学模型。然后在现有理论的基础上,提出了多代价函数模型预测直接功率控制,通过... 模型预测直接功率控制方法简单,响应速度快,被广泛应用于并网逆变器系统。本文首先介绍了现有的模型预测直接功率控制的原理,建立了相对应的模型预测控制数学模型。然后在现有理论的基础上,提出了多代价函数模型预测直接功率控制,通过增加代价函数的数量,让系统跟随功率偏差确定合适的代价函数,提高了控制系统的可选择性。最后,搭建了多代价函数模型预测直接功率控制的仿真模型和实验样机,证实了所提多代价函数直接功率控制策略的正确性和有效性。 展开更多
关键词 并网逆变器 模型预测控制 直接功率控制 多代价函数
下载PDF
三电平辅助变流器寿命优化控制 被引量:2
18
作者 向超群 杜京润 +3 位作者 孙士杰 李佳怡 范子寅 于天剑 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第1期328-341,共14页
辅助变流系统是动车组车辆上关键的电气组成部分,主要为空调机组、风机、照明等交流负载提供稳定的三相电源。结温是影响动车组三电平辅助变流器IGBT(Insulated-gate Bipolar Transistor)模块寿命的主要因素。为了提高动车组三电平中点... 辅助变流系统是动车组车辆上关键的电气组成部分,主要为空调机组、风机、照明等交流负载提供稳定的三相电源。结温是影响动车组三电平辅助变流器IGBT(Insulated-gate Bipolar Transistor)模块寿命的主要因素。为了提高动车组三电平中点钳位(Neutral-Point Clamped,NPC)型辅助变流器寿命,提出一种降低结温的模型预测电流控制(Model Predictive Current Control,MPCC)策略。首先,考虑传统MPCC在每个采样周期需要代入27个电压矢量循环计算,计算量较大,因此将三电平基本电压矢量划分在间隔60°的6个扇区中,通过计算电压矢量在两相静止坐标下的相角,进而判断参考电压矢量所处扇区,将备选矢量数目从27缩减至10,减少了计算量;其次,传统MPCC直接应用于动车组辅助变流器会使IGBT模块的结温较高,老化速度加快,对变流器安全稳定运行产生不可预测的损害,本文对IGBT模块的开关损耗和导通损耗进行近似等效,得到了和集射极电压、集电极电流相关的功率损耗因子。通过预测每相电流的方向,进而预测IGBT模块的开关和导通情况,动态加入功率损耗因子,并在代价函数中约束每相IGBT及其续流二极管(Free Wheeling Diode,FWD)的功率损耗,使得最优电压矢量在降低功率损耗的同时保证一定的控制性能。通过仿真与实验验证,本文所提方法相比传统MPCC策略降低了功率器件的结温,提高了变流器寿命。 展开更多
关键词 三电平中点钳位型辅助变流器 功率损耗 模型预测电流控制 损耗因子 变流器寿命
下载PDF
计及SOC自恢复的混合储能平抑风电功率波动控制 被引量:1
19
作者 林莉 林雨露 +3 位作者 谭惠丹 贾源琦 孔宪宇 曹雅裴 《电工技术学报》 EI CSCD 北大核心 2024年第3期658-671,共14页
混合储能系统能够较好地应对复杂的风电波动,有效地提高电网的稳定性和安全性。在混合储能平抑风电功率波动的典型应用场景下,该文首先提出一种计及荷电状态(SOC)自恢复的混合储能平抑风电功率波动控制方法,在满足风电平抑需求的情况下... 混合储能系统能够较好地应对复杂的风电波动,有效地提高电网的稳定性和安全性。在混合储能平抑风电功率波动的典型应用场景下,该文首先提出一种计及荷电状态(SOC)自恢复的混合储能平抑风电功率波动控制方法,在满足风电平抑需求的情况下,通过模型预测控制快速调节储能在平抑功率过程中的荷电状态,提高储能持续稳定运行能力;然后,为提高混合储能系统协调运行能力,设计了加权滑动平均(WMA)-模糊控制策略对超级电容和蓄电池功率进行动态分配;最后,结合实际风电功率数据,通过仿真验证了所提策略能有效平衡储能寿命和平抑风电波动的矛盾,能充分考虑两种储能设备的特性差异并提高功率分配的合理性。 展开更多
关键词 风电功率波动 混合储能 模型预测控制 加权滑动平均 模糊控制
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:1
20
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部