The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector...The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.展开更多
Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the ...Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.展开更多
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan...A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.展开更多
For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated....For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.展开更多
For a large class of discrete-time multivariable plants with arbitrary relative degrees, the design and analysis of the direct model reference adaptive control scheme are investigated under less restrictive assumption...For a large class of discrete-time multivariable plants with arbitrary relative degrees, the design and analysis of the direct model reference adaptive control scheme are investigated under less restrictive assumptions. The algorithm is based on a new parametrization derived from the high frequency gain matrix factorization Kp=LDU under the condition that the signs of the leading principal minors of/fp are known. By reproving the discrete-time Lp and L2σ norm relationship between inputs and outputs, establishing the properties of discrete-time adaptive law, defining the normalizing signal, and relating the signal with all signals in the closed-loop system, the stability and convergence of the discrete-time multivariable model reference adaptive control scheme are analyzed rigorously in a systematic fashion as in the continuous-time case.展开更多
The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the...The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.展开更多
A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and c...A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.展开更多
In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at...In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the secondary control level without any communication network,the challenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigated.In this paper,a multi-input multi-output(MIMO)model reference adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two methods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.展开更多
The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’...The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’s maximum power point(MPP)under normal and shaded weather conditions is crucial to conserving the maximum generated power.One of the biggest concerns with a PV system is the existence of partial shading,which produces multiple peaks in the P–V characteristic curve.In these circumstances,classical maximum power point tracking(MPPT)approaches are prone to getting stuck on local peaks and failing to follow the global maximum power point(GMPP).To overcome such obstacles,a new Lyapunov-based Robust Model Reference Adaptive Controller(LRMRAC)is designed and implemented to reach GMPP rapidly and ripple-free.The proposed controller also achieves MPP accurately under slow,abrupt and rapid changes in radiation,temperature and load profile.Simulation and OPAL-RT real-time simulators in various scenarios are performed to verify the superiority of the proposed approach over the other state-of-the-art methods,i.e.,ANFIS,INC,VSPO,and P&O.MPP and GMPP are accomplished in less than 3.8 ms and 10 ms,respectively.Based on the results presented,the LRMRAC controller appears to be a promising technique for MPPT in a PV system.展开更多
In the linear induction motor control system,the optical grating speed transducer is susceptible to strong magnetic field interference.What's more,it may reduce motor integration and raise device costs.Therefore a...In the linear induction motor control system,the optical grating speed transducer is susceptible to strong magnetic field interference.What's more,it may reduce motor integration and raise device costs.Therefore a speed identification method to replace grating speed transducer is studied in this article.This speed identification method for linear induction motor mainly adopts Model Reference Adaptive Method(Abbreviated as MRAS)and Popov Hyperstability Theory.The research content of this paper can be divided into four parts.First,the mathematical model of the motor based on the model reference adaptive system structure is deduced.Second,the adaptive law of the estimated speed is solved by Popov hyper-stability theory,which ensures the stability of the system.Third,the simulation model of the linear induction motor speed identification control system based on model reference adaptation is built in the MATLAB environment.Finally,the simulation test and analysis are carried out.The simulation results show that the speed identification control system can track the actual speed of the linear induction motor well in the no-load operation and the load operation,and the stability of the system is guaranteed in the full speed range.展开更多
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the...A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.展开更多
Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely...Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.展开更多
A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ...A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.展开更多
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot poli...The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.展开更多
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately...As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.展开更多
Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adap...Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains.展开更多
Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability crit...Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability criterion, respectively. The proposed estimators only need online measurement of currents, voltages, and rotor speed to effectively estimate stator resistance, inductance, and rotor flux-linkage simultaneously. The performance of the estimators is compared and verified through simulations and experiments, which show that the two estimators are simple, have good robustness against parameter variation, and are accurate in parameter tracking. However, the estimator based on the Popov stability criterion, which can overcome parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator, in contrast to only one integral unit in the estimator based on the Lyapunov stability theorem. In addition, the estimator based on the Popov stability criterion does not need the expertise that is required in designing a Lyapunov function.展开更多
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech...In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.展开更多
This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot...This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online and makes the robot respond like a prescribed impedance model. This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into account the human operator dynamics and adapts the prescribed robot impedance model so that the combined human-robot system has desirable characteristics for task performance. This design is based on model reference adaptive control, but of a nonstandard form. The net result is a controller with both adaptive impedance characteristics and assistive inputs that augment the human operator to provide improved task performance of the human-robot team. Simulations verify the performance of the proposed controller in a repetitive point-to-point motion task. Actual experimental implementations on a PR2 robot further corroborate the effectiveness of the approach.展开更多
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
文摘The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.
文摘Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.
文摘A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, 60974028)Natural Science Foundation of Jiangsu Province (No. BK2009083)+2 种基金Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No. 07KJB510114)Shandong Provincial Natural Science Foundation of China (No. ZR2009GM008)Natural Science Foundation of Jining University (No. 2009KJLX02)
文摘For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.
基金Program for New Century Excellent Talents in Universities of China (No.NCET-05-0607)National Natural Science Foundation ofChina (No.60774010).
文摘For a large class of discrete-time multivariable plants with arbitrary relative degrees, the design and analysis of the direct model reference adaptive control scheme are investigated under less restrictive assumptions. The algorithm is based on a new parametrization derived from the high frequency gain matrix factorization Kp=LDU under the condition that the signs of the leading principal minors of/fp are known. By reproving the discrete-time Lp and L2σ norm relationship between inputs and outputs, establishing the properties of discrete-time adaptive law, defining the normalizing signal, and relating the signal with all signals in the closed-loop system, the stability and convergence of the discrete-time multivariable model reference adaptive control scheme are analyzed rigorously in a systematic fashion as in the continuous-time case.
基金The project supported by the National Science Foundation of China (No. 10175022) and the Tenth-Five-Year Nuclear Energy Development of the Commission of Science Technology and Industry for National Defense, and of the China National Nuclear Corporation
文摘The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.
基金Supported by Deep Exploration Technology and Experimentation Project(201311194-04)
文摘A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.
文摘In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the secondary control level without any communication network,the challenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigated.In this paper,a multi-input multi-output(MIMO)model reference adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two methods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.
文摘The technological,economic,and environmental benefits of photovoltaic(PV)systems have led to their wide-spread adoption in recent years as a source of electricity generation.However,precisely identifying a PV system’s maximum power point(MPP)under normal and shaded weather conditions is crucial to conserving the maximum generated power.One of the biggest concerns with a PV system is the existence of partial shading,which produces multiple peaks in the P–V characteristic curve.In these circumstances,classical maximum power point tracking(MPPT)approaches are prone to getting stuck on local peaks and failing to follow the global maximum power point(GMPP).To overcome such obstacles,a new Lyapunov-based Robust Model Reference Adaptive Controller(LRMRAC)is designed and implemented to reach GMPP rapidly and ripple-free.The proposed controller also achieves MPP accurately under slow,abrupt and rapid changes in radiation,temperature and load profile.Simulation and OPAL-RT real-time simulators in various scenarios are performed to verify the superiority of the proposed approach over the other state-of-the-art methods,i.e.,ANFIS,INC,VSPO,and P&O.MPP and GMPP are accomplished in less than 3.8 ms and 10 ms,respectively.Based on the results presented,the LRMRAC controller appears to be a promising technique for MPPT in a PV system.
基金supported in part by Natural Science Foundation for Innovative Groups of Hubei Province under grant 2018CFA008。
文摘In the linear induction motor control system,the optical grating speed transducer is susceptible to strong magnetic field interference.What's more,it may reduce motor integration and raise device costs.Therefore a speed identification method to replace grating speed transducer is studied in this article.This speed identification method for linear induction motor mainly adopts Model Reference Adaptive Method(Abbreviated as MRAS)and Popov Hyperstability Theory.The research content of this paper can be divided into four parts.First,the mathematical model of the motor based on the model reference adaptive system structure is deduced.Second,the adaptive law of the estimated speed is solved by Popov hyper-stability theory,which ensures the stability of the system.Third,the simulation model of the linear induction motor speed identification control system based on model reference adaptation is built in the MATLAB environment.Finally,the simulation test and analysis are carried out.The simulation results show that the speed identification control system can track the actual speed of the linear induction motor well in the no-load operation and the load operation,and the stability of the system is guaranteed in the full speed range.
基金Supported by the National Natural Science Foundation of China(61074080)the Innovation Foundation for Aeronautical Science and Technology(08C52001)~~
文摘A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.
文摘Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.
文摘A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.
基金supported by National Natural Science Foundation of China(Grant No.51005184)National Science and Technology Major Project of Ministry of Science and Technology of China(Grant No.2009ZX04014-053)
文摘The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.
基金supported by State Key Laboratory of Robotics and System of China (Grant No. SKLR-2010 -MS - 14)State Key Lab of Embedded System and Service Computing of China(Grant No. 2010-11)
文摘As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
文摘Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains.
基金supported by China Scholarship Council, National Natural Science Foundation of China (No. 60634020)Scientific Research Foundation of Education Ministry for the Doctors(No. 20060532026)
文摘Two model reference adaptive system (MRAS) estimators are developed for identifying the parameters of permanent magnet synchronous motors (PMSM) based on the Lyapunov stability theorem and the Popov stability criterion, respectively. The proposed estimators only need online measurement of currents, voltages, and rotor speed to effectively estimate stator resistance, inductance, and rotor flux-linkage simultaneously. The performance of the estimators is compared and verified through simulations and experiments, which show that the two estimators are simple, have good robustness against parameter variation, and are accurate in parameter tracking. However, the estimator based on the Popov stability criterion, which can overcome parameter variation in a practical system, is superior in terms of response speed and convergence speed since there are both proportional and integral units in the estimator, in contrast to only one integral unit in the estimator based on the Lyapunov stability theorem. In addition, the estimator based on the Popov stability criterion does not need the expertise that is required in designing a Lyapunov function.
基金supported by the Foundation of Shanghai Aerospace Science and Technology(SAST2016077)。
文摘In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.
基金The work was supported by the National Science Foundation,the Office of Naval Research grant,the AFOSR (Air Force Office of Scientific Research) EOARD (European Office of Aerospace Research and Development) grant,the U.S. Army Research Office grant
文摘This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online and makes the robot respond like a prescribed impedance model. This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into account the human operator dynamics and adapts the prescribed robot impedance model so that the combined human-robot system has desirable characteristics for task performance. This design is based on model reference adaptive control, but of a nonstandard form. The net result is a controller with both adaptive impedance characteristics and assistive inputs that augment the human operator to provide improved task performance of the human-robot team. Simulations verify the performance of the proposed controller in a repetitive point-to-point motion task. Actual experimental implementations on a PR2 robot further corroborate the effectiveness of the approach.