Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are...Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.展开更多
For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators ...For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be ...This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.展开更多
The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local a...The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.展开更多
In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a...In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.展开更多
In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovest...In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau...In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.展开更多
A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model P...A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).展开更多
The sense of touch as a man-machine communication channel can be as acute as the sense of sight and sound. In some scenarios such as those seen in aerobatics, stunt flying, and combat flights, tactile sensors can even...The sense of touch as a man-machine communication channel can be as acute as the sense of sight and sound. In some scenarios such as those seen in aerobatics, stunt flying, and combat flights, tactile sensors can even outperform the conventional non-contact sensors in terms of situation awareness. Fusion of tactile sensory information with those obtained via sight and sound can avoid diverting the user’s attention away from the operational task at hand as well. In this study, the performance of an operator, to servo control the motion of a 2-dof model helicopter with pitch/yaw maneuverability, subjected to an intuitive body-referenced arrangement of a cluster of vibro-tactile sensors is investigated. A blindfolded operator will then control the helicopter to a safe attraction zone via a joystick based on this tactile sensory information. A fine-tuned local controller would take over for the end-of-motion precise homing. This study can pave the way towards a systematic integration and characterization of tactile sensors in high performance weapon platforms with improved situation awareness in visually awkward maneuvers such as those seen in aerial combat scenarios.展开更多
文摘Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.
文摘For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
文摘This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.
文摘The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.
文摘In this article, we propose a generalized empirical likelihood inference for the parametric component in semiparametric generalized partially linear models with longitudinal data. Based on the extended score vector, a generalized empirical likelihood ratios function is defined, which integrates the within-cluster?correlation meanwhile avoids direct estimating the nuisance parameters in the correlation matrix. We show that the proposed statistics are asymptotically?Chi-squared under some suitable conditions, and hence it can be used to construct the confidence region of parameters. In addition, the maximum empirical likelihood estimates of parameters and the corresponding asymptotic normality are obtained. Simulation studies demonstrate the performance of the proposed method.
基金Supported by China Mathematics Tian Yuan Youth Foundation (10226024) and China Postdoctoral Science Foundation.
文摘In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金Supported by the National Creative Research Groups Science Foundation of China (60421002) and National Basic Research Program of China (2007CB714000).
文摘In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.
文摘A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).
文摘The sense of touch as a man-machine communication channel can be as acute as the sense of sight and sound. In some scenarios such as those seen in aerobatics, stunt flying, and combat flights, tactile sensors can even outperform the conventional non-contact sensors in terms of situation awareness. Fusion of tactile sensory information with those obtained via sight and sound can avoid diverting the user’s attention away from the operational task at hand as well. In this study, the performance of an operator, to servo control the motion of a 2-dof model helicopter with pitch/yaw maneuverability, subjected to an intuitive body-referenced arrangement of a cluster of vibro-tactile sensors is investigated. A blindfolded operator will then control the helicopter to a safe attraction zone via a joystick based on this tactile sensory information. A fine-tuned local controller would take over for the end-of-motion precise homing. This study can pave the way towards a systematic integration and characterization of tactile sensors in high performance weapon platforms with improved situation awareness in visually awkward maneuvers such as those seen in aerial combat scenarios.