期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Infuences of Different Admixtures on the Drying Shrinkage Characteristics of Metakaolin-based Geopolymer Mortar
1
作者 ZHI Jing ZHANG Chengyang +2 位作者 WANG Yunwen WEI Libao ZHANG Pan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1425-1433,共9页
To investigate the influences of different admixtures on the drying shrinkage of polymer mortar in a metakaolin base,the experiments of VAE(vinyl acetate ethylene copolymer),APAM(anionic polyacrylamide)and CPAM(cation... To investigate the influences of different admixtures on the drying shrinkage of polymer mortar in a metakaolin base,the experiments of VAE(vinyl acetate ethylene copolymer),APAM(anionic polyacrylamide)and CPAM(cationic polyacrylamide)on the drying shrinkage properties of geopolymer mortar were designed under normal temperature curing conditions.An SP-175 mortar shrinkage dilatometer was introduced to measure the dry shrinkage of geopolymer mortar.Meanwhile,the drying shrinkage properties of geopolymer mortar are exhibited by the parameters of water loss rate,drying shrinkage rate,drying shrinkage strain and drying shrinkage coefficient.The experimental data are further fitted to obtain the prediction model of dry shrinkage of geopolymer mortar,which can better reflect the relationship between dry shrinkage rate and time.Finally,the experimental results demonstrate that the dry shrinkage of geopolymer mortar can be significantly increased by adding 4%VAE admixture,meanwhile under the condition that the polymer film formed by VAE reaction can strengthen and toughen the mortar.2.5%APAM admixture and 1.5%CPAM admixture can enhance the dry shrinkage performance of geopolymer mortar in a certain range. 展开更多
关键词 metakaolin base polymer mortar dry shrinkage property ADMIXTURE dry shrinkage prediction model
下载PDF
Physical Model of Drying Shrinkage of Recycled Aggregate Concrete 被引量:2
2
作者 郭远臣 WANG Xue QIAN Jueshi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1260-1267,共8页
We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR... We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation. 展开更多
关键词 pore recycled aggregate concrete capillary-bundle physical model drying shrinkage deformation experimental research numerical simulation
下载PDF
Influence of random shrinkage porosity on equivalent elastic modulus of casting: A statistical and numerical approach 被引量:1
3
作者 Wei Liu Feng Li +1 位作者 Fuhua Yan Hui Wang 《China Foundry》 SCIE 2017年第2期108-120,共13页
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c... Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position. 展开更多
关键词 random lattice model equivalent elastic modulus shrinkage porosity defects casting
下载PDF
Numerical simulation of uranium tetrafluoride fluorination in a multistage spouted bed using the improved CFD-DEM chemical reaction model 被引量:3
4
作者 Mofan Qiu Zhao Chen +3 位作者 Lin Jiang Rongzhen Liu Yaping Tang Malin Liu 《Particuology》 SCIE EI CAS CSCD 2023年第4期119-136,共18页
A CFD-DEM reaction coupling model was established to simulate UF_(4) fluorination process,in which heat and mass transfer,heterogeneous chemical reaction,and particle shrinkage model were considered.The gas behavior w... A CFD-DEM reaction coupling model was established to simulate UF_(4) fluorination process,in which heat and mass transfer,heterogeneous chemical reaction,and particle shrinkage model were considered.The gas behavior was described by the conservation laws of mass,momentum,and energy.The solid phase is modeled with the discrete element method,considering the gas-solid interphase force,contact force,heat transfer,and chemical reaction models based on the discretized surface.Each particle can be individually tracked and associated with specific physical properties.The proposed CFD-DEM reaction coupling model based on particle shrinking reaction model with discretized surface was validated by the experimental and literature results at first.Then a multistage conical spouted bed was proposed and the process of UF_(4) fluoridation reaction in it was investigated.The fluidization characteristics and the con-centration distribution of gaseous products in the spouted bed with an extended gas velocity range were obtained and analyzed.In addition,the effects of different parameters,such as superficial gas velocity,temperature,fluorine concentration,on fluoridation rate and the fluorine conversion rate were inves-tigated based on the proposed CFD-DEM reaction coupling model.The results obtained in this work are beneficial for method development of the chemical reaction simulation research in particle scale using the CFD-DEM model,and useful for operation and equipment parameters design of the uranium tetra-fluoride fluorinate industrial process in the future. 展开更多
关键词 CFD-DEM Particle shrinkage model Multistage spouted bed Uranium fluorination
原文传递
Deformation characterization method of typical double-walled turbine blade structure during casting process
5
作者 Yi-wei Dong Peng-fei Shao +3 位作者 Xiang Guo Bo Xu Chun-ping Yin Zhi-yong Tan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第10期2010-2020,共11页
To address the complex structures,large out-of-tolerance issues,and inconsistent quality of double-walled turbine blades,a mapping relationship between the structure and deformation was established based on a structur... To address the complex structures,large out-of-tolerance issues,and inconsistent quality of double-walled turbine blades,a mapping relationship between the structure and deformation was established based on a structural correlation study.Numerical simulations and pouring experiments were carried out based on the designed double-walled model,and a reliable displacement field model of the double-walled blade was established.A decoupling method for the displacement field of the double-walled blade castings was proposed,which decoupled the displacement field into bending,torsion,and expansion/shrinkage deformation vectors.Based on the displacement field analysis of the theoretical and physical models,an expansion/shrinkage model of double-walled blade structure castings was established.Furthermore,an experiment to determine the mapping relationship between double-walled construction and deformation was designed,which included the characteristic distribution distance and designed angle as structural parameters.The functional relationship between the deformation and the structural parameters was established based on a nonlinear regression method. 展开更多
关键词 Turbine blade Double-walled structure Deformation decoupling Expansion/shrinkage model Structure-deformation mapping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部