In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T...In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.展开更多
The grey relevance analysis is applied to study the 1996-2009 output value structure of China forestry system. Based on GM(1,1) model, information model is established to predict the forestry industrial structure of C...The grey relevance analysis is applied to study the 1996-2009 output value structure of China forestry system. Based on GM(1,1) model, information model is established to predict the forestry industrial structure of China in the next 10 years. Result shows that grey correlations between the three forestry industries and the forestry output value are 0.849 1, 0.731 1 and 0.821 3, respectively, with its order being secondary industry<tertiary industry<primary industry. Prediction result shows that forestry industry of China is in the middle stage of industrialization; and both secondary and tertiary industries will develop rapidly and become the leading industries.展开更多
A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physic...A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physical algorithm for protein structure prediction problem is put forward. First, by elaborately simulating the movement of the smooth elastic balls in the physical world, the algorithm finds low energy configurations for a given monomer chain. An "off-trap" strategy is then proposed to get out of local minima. Experimental results show promising performance. For all chains with lengths 13≤n ≤55, the proposed algorithm finds states with lower energy than the putative ground states reported in literatures. Furthermore, for chain lengths n = 21, 34, and 55, the algorithm finds new low energy configurations different from those given in literatures.展开更多
The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the &...The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P...The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke pa...Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal.展开更多
This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder.Firstly,multivariate Bayesian dynamic linear model(MBDLM)considering dynami...This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder.Firstly,multivariate Bayesian dynamic linear model(MBDLM)considering dynamic correlation among the multiple variables is provided to predict dynamic extreme deflections;secondly,with the proposed MBDLM,the dynamic correlation coefficients between any two performance functions can be predicted;finally,based on MBDLM and Gaussian copula technique,a new data fusion method is given to predict the serviceability reliability of the long-span bridge girder,and the monitoring extreme deflection data from an actual bridge is provided to illustrated the feasibility and application of the proposed method.展开更多
Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 ...Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 PCDTs congeners at the B3LYP/6-31G* level of theory.By means of the VSMP(variable selection and modeling based on prediction) program,one optimal descriptor(molecular polarizability,α) was selected to develop a QSRR model for the prediction of gas chromatographic retention indices(GC-RI) of PCDTs.The estimated correlation coefficients(r2) and LOO-validated correlation coefficients(q2),all more than 0.99,were built by multiple linear regression,which shows a good estimation ability and stability of the models.A prediction power for the external samples was validated by the model built from the training set with 17 polychlorinated dibenzothiophenes.展开更多
According to the chloride corrosion environment,service life prediction model of concrete structure of sea-crossing bridge was built using modified Fick's second law and the whole probability calculation method,wh...According to the chloride corrosion environment,service life prediction model of concrete structure of sea-crossing bridge was built using modified Fick's second law and the whole probability calculation method,which was suitable for China. Furthermore,a visual service life prediction program of concrete structure was developed by optimized Monte Carlo method. Meanwhile,Life 365 program was compared,indicating reliability of the prediction program. Finally,the validity of prediction model was verified in JinTang Bridge of Zhoushan Island Mainland Linkage Project.展开更多
Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are bas...Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.展开更多
Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of...Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of ECTr for production of inner blisks(bladed disks)with a special chamfer structure at blade tip.Due to the existence of chamfer,the ECTr process of inner blades is in a non-equilibrium state during the early stages,and the physical field changes in the machining gap are complex,making it difficult to predict the forming process.In this paper,a dynamic evolution model(DEM)of inner blade ECTr with a special chamfer at blade tip structure is proposed,and an ECTr multi-physical fields simulation study was carried out.The evolution of the chamfer at blade tip was analyzed and data related to chamfer were predicted based on the dependence of anode boundary properties with machining time and feed rate.In addition,the dis-tributions of current density,electrolyte flow rate,bubble volume fraction,temperature rise,and electrolyte conductivity in the machining area at different times were obtained by combining them with the multi-physical fields simulation results.Subsequently,a series of ECTr experiments were conducted,in which,as the feed rate increased,the surface quality and machining accuracy of the inner blades were improved.Compared with the simulation results,the error in machining accu-racy of the chamfer profile is controlled within±2%,and the machining accuracy of the blade full profile was controlled within±0.2 mm,indicating that the model proposed in this study was effec-tive in predicting the evolution of inner blades ECTr with chamfer structures at blade tip.展开更多
Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer science.These researchers adopt ...Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer science.These researchers adopt various research paradigms to attack the same structure prediction problem:biochemists and physicists attempt to reveal the principles governing protein folding;mathematicians,especially statisticians,usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure,while computer scientists formulate protein structure prediction as an optimization problem-finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure.These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman,namely,data modeling and algorithmic modeling.Recently,we have also witnessed the great success of deep learning in protein structure prediction.In this review,we present a survey of the efforts for protein structure prediction.We compare the research paradigms adopted by researchers from different fields,with an emphasis on the shift of research paradigms in the era of deep learning.In short,the algorithmic modeling techniques,especially deep neural networks,have considerably improved the accuracy of protein structure prediction;however,theories interpreting the neural networks and knowledge on protein folding are still highly desired.展开更多
Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patien...Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs).展开更多
A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been ext...A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been extracted. These seqlets will capture the relationship be-tween amino acid sequence and the secondary structures of proteins and further form the protein secondary structure dictionary. To be elaborate, the dictionary is organism-specific. Protein sec-ondary structure prediction is formulated as an integrated word segmentation and part of speech tagging problem. The word-lattice is used to represent the results of the word segmentation and the maximum entropy model is used to calculate the probability of a seqlet tagged as a certain secondary structure type. The method is markovian in the seqlets, permitting efficient exact cal-culation of the posterior probability distribution over all possible word segmentations and their tags by viterbi algorithm. The optimal segmentations and their tags are computed as the results of protein secondary structure prediction. The method is applied to predict the secondary struc-tures of proteins of four organisms respectively and compared with the PHD method. The results show that the performance of this method is higher than that of PHD by about 3.9% Q3 accuracy and 4.6% SOV accuracy. Combining with the local similarity protein sequences that are obtained by BLAST can give better prediction. The method is also tested on the 50 CASP5 target proteins with Q3 accuracy 78.9% and SOV accuracy 77.1%. A web server for protein secondary structure prediction has been constructed which is available at http://www.insun.hit.edu.cn:81/demos/bi-ology/index.html.展开更多
Link prediction is used to complete the knowledge graph.Convolu-tional neural network models are commonly used for link prediction tasks,but they only consider the direct relations between entity pairs,ignoring the se...Link prediction is used to complete the knowledge graph.Convolu-tional neural network models are commonly used for link prediction tasks,but they only consider the direct relations between entity pairs,ignoring the semantic information contained in the relation paths.In addition,the embedding dimension of the relation is generally larger than that of the entity in the ConvR model,which blocks the progress of downstream tasks.If we reduce the embedding dimension of the relation,the performance will be greatly degraded.This paper proposes a convolutional model PITri-R-ConvR based on triangular structure relational infer-ence.The model uses relational path inference to capture semantic information,while using a triangular structure to ensure the reliability and computational effi-ciency of relational inference.In addition,the decoder R-ConvR improves the initial embedding of the ConvR model,which solves the problems of the ConvR model and significantly improves the prediction performance.Finally,this paper conducts sufficient experiments in multiple datasets to verify the superiority of the model and the rationality of each module.展开更多
The aim of this paper is first to establish a general prediction framework for turning(period)term structures in COVID-19 epidemic related to the implementation of emergency risk management in the practice,which allow...The aim of this paper is first to establish a general prediction framework for turning(period)term structures in COVID-19 epidemic related to the implementation of emergency risk management in the practice,which allows us to conduct the reliable estimation for the peak period based on the new concept of“Turning Period”(instead of the traditional one with the focus on“Turning Point”)for infectious disease spreading such as the COVID-19 epidemic appeared early in year 2020.By a fact that emergency risk management is necessarily to implement emergency plans quickly,the identification of the Turning Period is a key element to emergency planning as it needs to provide a time line for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.As applications,the paper also discusses how this“Turning Term(Period)Structure”is used to predict the peak phase for COVID-19 epidemic in Wuhan from January/2020 to early March/2020.Our study shows that the predication framework established in this paper is capable to provide the trajectory of COVID-19 cases dynamics for a few weeks starting from Feb.10/2020 to early March/2020,from which we successfully predicted that the turning period of COVID-19 epidemic in Wuhan would arrive within one week after Feb.14/2020,as verified by the true observation in the practice.The method established in this paper for the prediction of“Turning Term(Period)Structures”by applying COVID-19 epidemic in China happened early 2020 seems timely and accurate,providing adequate time for the government,hospitals,essential industry sectors and services to meet peak demands and to prepare aftermath planning,and associated criteria for the Turning Term Structure of COVID-19 epidemic is expected to be a useful and powerful tool to implement the so-called“dynamic zero-COVID-19 policy”ongoing basis in the practice.展开更多
文摘In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.
基金Supported by the Society of Entrepreneurs & Ecology and the Research Project of Deepening the Reform of Collective Forest Right System in Beijing
文摘The grey relevance analysis is applied to study the 1996-2009 output value structure of China forestry system. Based on GM(1,1) model, information model is established to predict the forestry industrial structure of China in the next 10 years. Result shows that grey correlations between the three forestry industries and the forestry output value are 0.849 1, 0.731 1 and 0.821 3, respectively, with its order being secondary industry<tertiary industry<primary industry. Prediction result shows that forestry industry of China is in the middle stage of industrialization; and both secondary and tertiary industries will develop rapidly and become the leading industries.
基金The National Natural Science Founda-tion of China (No.10471051) and the National Basic Research Program (973) of China (No.2004CB318000)
文摘A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physical algorithm for protein structure prediction problem is put forward. First, by elaborately simulating the movement of the smooth elastic balls in the physical world, the algorithm finds low energy configurations for a given monomer chain. An "off-trap" strategy is then proposed to get out of local minima. Experimental results show promising performance. For all chains with lengths 13≤n ≤55, the proposed algorithm finds states with lower energy than the putative ground states reported in literatures. Furthermore, for chain lengths n = 21, 34, and 55, the algorithm finds new low energy configurations different from those given in literatures.
文摘The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金supported by the second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the National Natural Science Foundation of China(Grant No.41941019)the National Natural Science Foundation of China(Grant NO.42307217)。
文摘The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal.
基金This work was supported by Natural Science Foundation of Gansu Province of China(20JR10RA625,20JR10RA623)National Key Research and Development Project of China(Project No.2019YFC1511005)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2020-55)National Natural Science Foundation of China(Grant No.51608243).
文摘This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder.Firstly,multivariate Bayesian dynamic linear model(MBDLM)considering dynamic correlation among the multiple variables is provided to predict dynamic extreme deflections;secondly,with the proposed MBDLM,the dynamic correlation coefficients between any two performance functions can be predicted;finally,based on MBDLM and Gaussian copula technique,a new data fusion method is given to predict the serviceability reliability of the long-span bridge girder,and the monitoring extreme deflection data from an actual bridge is provided to illustrated the feasibility and application of the proposed method.
基金Sponsored by the NSF of Guangxi Province (No. 2011XNSFA018059)Guangxi Key Laboratory Research Fund of Environmental Engineering and Protection Assessment (No. 0801Z026)+1 种基金Major Science of Water Pollution Control and Management (No. 2008ZX07317-02)the Guangxi Zhuang Autonomous Region Department of Education Research (No. 201010LX174) Funding
文摘Polychlorinated dibenzothiophenes(PCDTs) are a group of important persistent organic pollutants.In the present study,geometrical optimization and electrostatic potential calculations have been performed for all 135 PCDTs congeners at the B3LYP/6-31G* level of theory.By means of the VSMP(variable selection and modeling based on prediction) program,one optimal descriptor(molecular polarizability,α) was selected to develop a QSRR model for the prediction of gas chromatographic retention indices(GC-RI) of PCDTs.The estimated correlation coefficients(r2) and LOO-validated correlation coefficients(q2),all more than 0.99,were built by multiple linear regression,which shows a good estimation ability and stability of the models.A prediction power for the external samples was validated by the model built from the training set with 17 polychlorinated dibenzothiophenes.
文摘According to the chloride corrosion environment,service life prediction model of concrete structure of sea-crossing bridge was built using modified Fick's second law and the whole probability calculation method,which was suitable for China. Furthermore,a visual service life prediction program of concrete structure was developed by optimized Monte Carlo method. Meanwhile,Life 365 program was compared,indicating reliability of the prediction program. Finally,the validity of prediction model was verified in JinTang Bridge of Zhoushan Island Mainland Linkage Project.
基金supported by the ESCAP/WMO Typhoon Committee Research Fellowship Scheme 2020 hosted by the Hong Kong Observatorythe Shanghai Natural Science Foundation(21ZR1477300)+2 种基金FengYun Application Pioneering Project(FY-APP-2021.0106)WMO Typhoon Landfall Forecast Demonstration Project(TLFDP)the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service。
文摘Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.
基金the National Nature Science Foundation of China (52275435)the National Natural Science Foundation of China for Creative Research Groups (51921003)the National Science and Technology Major Project (2017-VII-0004-0097).
文摘Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of ECTr for production of inner blisks(bladed disks)with a special chamfer structure at blade tip.Due to the existence of chamfer,the ECTr process of inner blades is in a non-equilibrium state during the early stages,and the physical field changes in the machining gap are complex,making it difficult to predict the forming process.In this paper,a dynamic evolution model(DEM)of inner blade ECTr with a special chamfer at blade tip structure is proposed,and an ECTr multi-physical fields simulation study was carried out.The evolution of the chamfer at blade tip was analyzed and data related to chamfer were predicted based on the dependence of anode boundary properties with machining time and feed rate.In addition,the dis-tributions of current density,electrolyte flow rate,bubble volume fraction,temperature rise,and electrolyte conductivity in the machining area at different times were obtained by combining them with the multi-physical fields simulation results.Subsequently,a series of ECTr experiments were conducted,in which,as the feed rate increased,the surface quality and machining accuracy of the inner blades were improved.Compared with the simulation results,the error in machining accu-racy of the chamfer profile is controlled within±2%,and the machining accuracy of the blade full profile was controlled within±0.2 mm,indicating that the model proposed in this study was effec-tive in predicting the evolution of inner blades ECTr with chamfer structures at blade tip.
基金the National Key R&D Program of China(Grant No.2020YFA0907000)lthe National Natural Science Foundation of China(Grant Nos.32271297,62072435,31770775,and 31671369)for providing financial support for this study and publication charges.
文摘Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer science.These researchers adopt various research paradigms to attack the same structure prediction problem:biochemists and physicists attempt to reveal the principles governing protein folding;mathematicians,especially statisticians,usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure,while computer scientists formulate protein structure prediction as an optimization problem-finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure.These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman,namely,data modeling and algorithmic modeling.Recently,we have also witnessed the great success of deep learning in protein structure prediction.In this review,we present a survey of the efforts for protein structure prediction.We compare the research paradigms adopted by researchers from different fields,with an emphasis on the shift of research paradigms in the era of deep learning.In short,the algorithmic modeling techniques,especially deep neural networks,have considerably improved the accuracy of protein structure prediction;however,theories interpreting the neural networks and knowledge on protein folding are still highly desired.
基金Fundamental Research Funds for the Central Universities in China,No.N161608001 and No.N171903002
文摘Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs).
基金This work was supported by the National Natural Science Foundation of China(Grant No.60373100)The High Technology Research and Development Programme of China(Grant No.2002AA117010-09).
文摘A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been extracted. These seqlets will capture the relationship be-tween amino acid sequence and the secondary structures of proteins and further form the protein secondary structure dictionary. To be elaborate, the dictionary is organism-specific. Protein sec-ondary structure prediction is formulated as an integrated word segmentation and part of speech tagging problem. The word-lattice is used to represent the results of the word segmentation and the maximum entropy model is used to calculate the probability of a seqlet tagged as a certain secondary structure type. The method is markovian in the seqlets, permitting efficient exact cal-culation of the posterior probability distribution over all possible word segmentations and their tags by viterbi algorithm. The optimal segmentations and their tags are computed as the results of protein secondary structure prediction. The method is applied to predict the secondary struc-tures of proteins of four organisms respectively and compared with the PHD method. The results show that the performance of this method is higher than that of PHD by about 3.9% Q3 accuracy and 4.6% SOV accuracy. Combining with the local similarity protein sequences that are obtained by BLAST can give better prediction. The method is also tested on the 50 CASP5 target proteins with Q3 accuracy 78.9% and SOV accuracy 77.1%. A web server for protein secondary structure prediction has been constructed which is available at http://www.insun.hit.edu.cn:81/demos/bi-ology/index.html.
基金This work was supported by the National Key R&D Program of China under Grant No.20201710200.
文摘Link prediction is used to complete the knowledge graph.Convolu-tional neural network models are commonly used for link prediction tasks,but they only consider the direct relations between entity pairs,ignoring the semantic information contained in the relation paths.In addition,the embedding dimension of the relation is generally larger than that of the entity in the ConvR model,which blocks the progress of downstream tasks.If we reduce the embedding dimension of the relation,the performance will be greatly degraded.This paper proposes a convolutional model PITri-R-ConvR based on triangular structure relational infer-ence.The model uses relational path inference to capture semantic information,while using a triangular structure to ensure the reliability and computational effi-ciency of relational inference.In addition,the decoder R-ConvR improves the initial embedding of the ConvR model,which solves the problems of the ConvR model and significantly improves the prediction performance.Finally,this paper conducts sufficient experiments in multiple datasets to verify the superiority of the model and the rationality of each module.
基金Supported by the National Natural Science Foundation of China(71971031,U1811462)
文摘The aim of this paper is first to establish a general prediction framework for turning(period)term structures in COVID-19 epidemic related to the implementation of emergency risk management in the practice,which allows us to conduct the reliable estimation for the peak period based on the new concept of“Turning Period”(instead of the traditional one with the focus on“Turning Point”)for infectious disease spreading such as the COVID-19 epidemic appeared early in year 2020.By a fact that emergency risk management is necessarily to implement emergency plans quickly,the identification of the Turning Period is a key element to emergency planning as it needs to provide a time line for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.As applications,the paper also discusses how this“Turning Term(Period)Structure”is used to predict the peak phase for COVID-19 epidemic in Wuhan from January/2020 to early March/2020.Our study shows that the predication framework established in this paper is capable to provide the trajectory of COVID-19 cases dynamics for a few weeks starting from Feb.10/2020 to early March/2020,from which we successfully predicted that the turning period of COVID-19 epidemic in Wuhan would arrive within one week after Feb.14/2020,as verified by the true observation in the practice.The method established in this paper for the prediction of“Turning Term(Period)Structures”by applying COVID-19 epidemic in China happened early 2020 seems timely and accurate,providing adequate time for the government,hospitals,essential industry sectors and services to meet peak demands and to prepare aftermath planning,and associated criteria for the Turning Term Structure of COVID-19 epidemic is expected to be a useful and powerful tool to implement the so-called“dynamic zero-COVID-19 policy”ongoing basis in the practice.