The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a bo...Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.展开更多
Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. ...Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. e., cannot reflect various regulations of settlement at some stages or the entire process). In this study,the correlation coefficient,maximum error values,and other values were obtained according to the fitting and predicted results of a single model. The coefficient of variation was then introduced to determine the weight of each model forming the combination. The proposed model was used to fit and predict for settlement and overcome the issue of utilizing a single model while determining the weight. The fitting predictive effect was also analyzed using the settlement fitting precision results. The fitting precision of optimizing the combination model is high. The predicted data of the post-construction settlement are closer to the calculated value of the settlement monitoring data. Moreover,the proposed model has good practicability,does not require the interval data of settlement,and restricts the model number. Thus,this model can be applied in the engineering field.展开更多
This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. T...This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor.展开更多
Today, the nested model is used widely. The effect and role of each nested variate is analyzed in this paper. It is found that the forecast could benefit by nesting part of the variates and the effect of each of the v...Today, the nested model is used widely. The effect and role of each nested variate is analyzed in this paper. It is found that the forecast could benefit by nesting part of the variates and the effect of each of the variates may be different. Therefore, only the effectual variates are chosen for the nesting. According to this finding, a scheme is suggested and applied to the limited area mode (TL10) nested with global spectral mode (T63) for forecasting tropical cyclones over the South China Sea. A few numerical prediction tests show that this scheme is reasonable and efficient.展开更多
Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance o...Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.展开更多
The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibrati...The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability.展开更多
Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in...Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in energy predictions,few studies have addressed the potential data shortage problem in developing data-driven models.One promising solution is data augmentation,which aims to enrich existing building data resources for reliable predictive modeling.This study proposes a deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Two types of conditional variational autoencoders have been designed for synthetic energy data generation using fully connected and one-dimensional convolutional layers respectively.Data experiments have been designed to evaluate the value of data augmentation using actual measurements from 52 buildings.The results indicate that conditional variational autoencoders are capable of generating high-quality synthetic data samples,which in turns helps to enhance the accuracy in short-term building energy predictions.The average performance enhancement ratios in terms of CV-RMSE range between 12%and 18%.Practical guidelines have been obtained to ensure the validity and quality of synthetic building energy data.The research outcomes are valuable for enhancing the robustness and reliability of data-driven models for smart building operation management.展开更多
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金financially supported by the Special Fund for Forest Scientific Research in the Public Welfare(No.201404402)Fundamental Research Funds for the Central Universities(Nos.C2572014BA23 and 2572019BA03)。
文摘Studying diurnal variation in the moisture content of fine forest fuel(FFMC)is key to understanding forest fire prevention.This study established models for predicting the diurnal mean,maximum,and minimum FFMC in a boreal forest in China using the relationship between FFMC and meteorological variables.A spline interpolation function is proposed for describing diurnal variations in FFMC.After 1 day with a 1 h field measurement data testing,the results indicate that the accuracy of the sunny slope model was 100%and 84%when the absolute error was<3%and<10%,respectively,whereas the accuracy of the shady slope model was 72%and 76%when the absolute error was<3%and<10%,respectively.The results show that sunny slope and shady slope models can predict and describe diurnal variations in fine fuel moisture content,and provide a basis for forest fire danger prediction in boreal forest ecosystems in China.
基金National Natural Science Foundations of China(Nos.41172236,41402243,and 40911120044)Basic Research Project of Jilin University,China(No.450060491448)
文摘Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. e., cannot reflect various regulations of settlement at some stages or the entire process). In this study,the correlation coefficient,maximum error values,and other values were obtained according to the fitting and predicted results of a single model. The coefficient of variation was then introduced to determine the weight of each model forming the combination. The proposed model was used to fit and predict for settlement and overcome the issue of utilizing a single model while determining the weight. The fitting predictive effect was also analyzed using the settlement fitting precision results. The fitting precision of optimizing the combination model is high. The predicted data of the post-construction settlement are closer to the calculated value of the settlement monitoring data. Moreover,the proposed model has good practicability,does not require the interval data of settlement,and restricts the model number. Thus,this model can be applied in the engineering field.
基金supported by the National Basic Research Program of China(Grant No.2006CB400502)the World Bank Cooperative Project(Grant No.THSD-07)the 111 Program of the Ministry of Education and the State Administration of Foreign Expert Affairs,China(Grant No.B08048)
文摘This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor.
文摘Today, the nested model is used widely. The effect and role of each nested variate is analyzed in this paper. It is found that the forecast could benefit by nesting part of the variates and the effect of each of the variates may be different. Therefore, only the effectual variates are chosen for the nesting. According to this finding, a scheme is suggested and applied to the limited area mode (TL10) nested with global spectral mode (T63) for forecasting tropical cyclones over the South China Sea. A few numerical prediction tests show that this scheme is reasonable and efficient.
基金funded by the National BasicResearch Program of China (Grant No. 2010CB951404)the National Natural Science Foundation of China (Grant No. 40971024)CMA Special Meteorology Project (Grant No.GYHY200706001)
文摘Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.
基金supports from the National Natural Science Foundation of China Youth Fund Project(52004096).
文摘The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability.
基金support of this research by the National Natural Science Foundation of China(No.51908365,No.71772125)the Philosophical and Social Science Program of Guangdong Province,China(GD18YGL07).
文摘Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in energy predictions,few studies have addressed the potential data shortage problem in developing data-driven models.One promising solution is data augmentation,which aims to enrich existing building data resources for reliable predictive modeling.This study proposes a deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Two types of conditional variational autoencoders have been designed for synthetic energy data generation using fully connected and one-dimensional convolutional layers respectively.Data experiments have been designed to evaluate the value of data augmentation using actual measurements from 52 buildings.The results indicate that conditional variational autoencoders are capable of generating high-quality synthetic data samples,which in turns helps to enhance the accuracy in short-term building energy predictions.The average performance enhancement ratios in terms of CV-RMSE range between 12%and 18%.Practical guidelines have been obtained to ensure the validity and quality of synthetic building energy data.The research outcomes are valuable for enhancing the robustness and reliability of data-driven models for smart building operation management.