Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ...The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.展开更多
This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement sp...This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is define...Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to...Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.展开更多
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum...Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.展开更多
The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multipl...The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches inc...The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo...With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.展开更多
An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods ...An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.展开更多
The objective of this study is to analyze the sensitivity of the statistical models regarding the size of samples. The study carried out in Ivory Coast is based on annual maximum daily rainfall data collected from 26 ...The objective of this study is to analyze the sensitivity of the statistical models regarding the size of samples. The study carried out in Ivory Coast is based on annual maximum daily rainfall data collected from 26 stations. The methodological approach is based on the statistical modeling of maximum daily rainfall. Adjustments were made on several sample sizes and several return periods (2, 5, 10, 20, 50 and 100 years). The main results have shown that the 30 years series (1931-1960;1961-1990;1991-2020) are better adjusted by the Gumbel (26.92% - 53.85%) and Inverse Gamma (26.92% - 46.15%). Concerning the 60-years series (1931-1990;1961-2020), they are better adjusted by the Inverse Gamma (30.77%), Gamma (15.38% - 46.15%) and Gumbel (15.38% - 42.31%). The full chronicle 1931-2020 (90 years) presents a notable supremacy of 50% of Gumbel model over the Gamma (34.62%) and Gamma Inverse (15.38%) model. It is noted that the Gumbel is the most dominant model overall and more particularly in wet periods. The data for periods with normal and dry trends were better fitted by Gamma and Inverse Gamma.展开更多
A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regulariti...A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.展开更多
Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is sign...Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is significant to comprehend the factors motivating women to become entrepreneurs.The non-understanding of the factors can result in the endurance of low living stan-dards and the design of expensive and ineffectual policies.But female involve-ment in entrepreneurship becomes higher in developing economies compared to developed economies.Women Entrepreneurship Index(WEI)plays a vital role in determining the factors that enable theflourishment of high potential female entrepreneurs which enhances economic welfare and contributes to the economic and social fabric of society.Therefore,it is needed to design an automated and accurate WEI prediction model to improve women’s entrepreneurship.In this view,this article develops an automated statistical analysis enabled WEI predic-tive(ASA-WEIP)model.The proposed ASA-WEIP technique aims to effectually determine the WEI.The proposed ASA-WEIP technique encompasses a series of sub-processes such as pre-processing,WEI prediction,and parameter optimiza-tion.For the prediction of WEI,the ASA-WEIP technique makes use of the Deep Belief Network(DBN)model,and the parameter optimization process takes place using Squirrel Search Algorithm(SSA).The performance validation of the ASA-WEIP technique was executed using the benchmark dataset from the Kaggle repo-sitory.The experimental outcomes stated the better outcomes of the ASA-WEIP technique over the other existing techniques.展开更多
This paper proposed a method to incorporate syntax-based language models in phrase-based statistical machine translation (SMT) systems. The syntax-based language model used in this paper is based on link grammar,which...This paper proposed a method to incorporate syntax-based language models in phrase-based statistical machine translation (SMT) systems. The syntax-based language model used in this paper is based on link grammar,which is a high lexical formalism. In order to apply language models based on link grammar in phrase-based models,the concept of linked phrases,an extension of the concept of traditional phrases in phrase-based models was brought out. Experiments were conducted and the results showed that the use of syntax-based language models could improve the performance of the phrase-based models greatly.展开更多
<strong>Background:</strong> The Cox Proportional Hazard (Cox-PH) model has been a popularly used method for survival analysis of cancer data given the survival times as a function of covariates or risk fa...<strong>Background:</strong> The Cox Proportional Hazard (Cox-PH) model has been a popularly used method for survival analysis of cancer data given the survival times as a function of covariates or risk factors. However, it is very seldom to see the assumptions for the application of the Cox-PH model satisfied in most of the research studies, raising questions about the effectiveness, robustness, and accuracy of the model predicting the proportion of survival times. This is because the necessary assumptions in most cases are difficult to satisfy, as well as the assessment of interaction among covariates. <strong>Methods:</strong> To further improve the therapeutic/treatment strategy for cancer diseases, we proposed a new approach to survival analysis using multiple myeloma (MM) cancer data. We first developed a data-driven nonlinear statistical model that predicts the survival times with 93% accuracy. We then performed a parametric analysis on the predicted survival times to obtain the survival function which is used in estimating the proportion of survival times. <strong>Results:</strong> The new proposed approach for survival analysis has proved to be more robust and gives better estimates of the proportion of survival than the Cox-PH model. Also, satisfying the proposed model assumptions and finding interactions among risk factors is less difficult compared to the Cox-PH model. The proposed model can predict the real values of the survival times and the identified risk factors are ranked according to the percent of contribution to the survival time. <strong>Conclusion:</strong> The new proposed nonlinear statistical model approach for survival analysis of cancer diseases is very efficient and provides an improved and innovative strategy for cancer therapeutic/treatment.展开更多
The rapid increase in Water Temperature Rivers (WTR) observed globally in recent decades and projections for the coming decades under climate change scenarios make water temperature prediction essential to assess chan...The rapid increase in Water Temperature Rivers (WTR) observed globally in recent decades and projections for the coming decades under climate change scenarios make water temperature prediction essential to assess changes in aquatic biota. Statistical models for stream temperature prediction have been widely used because they are computationally simple, involve few parameters, and because of their relatively good accuracy. However, these models have not been evaluated in Peruvian Andean rivers. This work evaluates the main water temperature statistical models from the literature and fits them with data recorded in the Ichu River experimental watershed, Huancavelica-Peru. Three well-known models were reviewed: the Stefan & Preud’homme linear regression model and the Mohseni & Stefan 3- and 4-parameter logistic regression models. Ichu river water temperatures were simulated using the SWAT (Soil and Water Assessment Tool) hydrometeorological model, which defaults to the Stefan & Preud’homme model. Modifications and adjustment of coefficients of the evaluated models were configured in the SWAT code using the “Latin Hypercube Sampling” technique. The evaluated models showed poor performance in predicting the water temperature in the Ichu River with NSE (Nash-Sutcliffe Efficiency) values ranging from -2.6 to 0.49, while the modified models showed NSE values of 0.72 in all three cases. Findings suggest that the statistical models shown in the literature should be validated for Andean rivers.展开更多
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
文摘The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.
文摘This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
文摘Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
文摘Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.
基金funded by the National Natural Science Foundation of China(No.41972266)Chongqing Natural Science Foundation(No.CSTB2024NSCQ-MSX0006).
文摘Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.
基金supported by the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ200607)China NSF Grants(Grant No.61631020)+1 种基金Aeronautical Science Foundation of China(Grant No.2017ZC52021)Open Foundation for Graduate Innovation of NUAA(Grant No.kfjj20170405 and kfjj20180408)
文摘The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
基金Supported by the High Technology Research and Development Program of China (863 Program,No2006AA100301)
文摘The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金This study was funded by the National Natural Science Foundation of China(Grant No.41975027)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171457)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disasters(Grant No.2017YFC1501401).
文摘With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.
文摘An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.
文摘The objective of this study is to analyze the sensitivity of the statistical models regarding the size of samples. The study carried out in Ivory Coast is based on annual maximum daily rainfall data collected from 26 stations. The methodological approach is based on the statistical modeling of maximum daily rainfall. Adjustments were made on several sample sizes and several return periods (2, 5, 10, 20, 50 and 100 years). The main results have shown that the 30 years series (1931-1960;1961-1990;1991-2020) are better adjusted by the Gumbel (26.92% - 53.85%) and Inverse Gamma (26.92% - 46.15%). Concerning the 60-years series (1931-1990;1961-2020), they are better adjusted by the Inverse Gamma (30.77%), Gamma (15.38% - 46.15%) and Gumbel (15.38% - 42.31%). The full chronicle 1931-2020 (90 years) presents a notable supremacy of 50% of Gumbel model over the Gamma (34.62%) and Gamma Inverse (15.38%) model. It is noted that the Gumbel is the most dominant model overall and more particularly in wet periods. The data for periods with normal and dry trends were better fitted by Gamma and Inverse Gamma.
文摘A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.
文摘Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is significant to comprehend the factors motivating women to become entrepreneurs.The non-understanding of the factors can result in the endurance of low living stan-dards and the design of expensive and ineffectual policies.But female involve-ment in entrepreneurship becomes higher in developing economies compared to developed economies.Women Entrepreneurship Index(WEI)plays a vital role in determining the factors that enable theflourishment of high potential female entrepreneurs which enhances economic welfare and contributes to the economic and social fabric of society.Therefore,it is needed to design an automated and accurate WEI prediction model to improve women’s entrepreneurship.In this view,this article develops an automated statistical analysis enabled WEI predic-tive(ASA-WEIP)model.The proposed ASA-WEIP technique aims to effectually determine the WEI.The proposed ASA-WEIP technique encompasses a series of sub-processes such as pre-processing,WEI prediction,and parameter optimiza-tion.For the prediction of WEI,the ASA-WEIP technique makes use of the Deep Belief Network(DBN)model,and the parameter optimization process takes place using Squirrel Search Algorithm(SSA).The performance validation of the ASA-WEIP technique was executed using the benchmark dataset from the Kaggle repo-sitory.The experimental outcomes stated the better outcomes of the ASA-WEIP technique over the other existing techniques.
基金National Natural Science Foundation of China ( No.60803078)National High Technology Research and Development Programs of China (No.2006AA010107, No.2006AA010108)
文摘This paper proposed a method to incorporate syntax-based language models in phrase-based statistical machine translation (SMT) systems. The syntax-based language model used in this paper is based on link grammar,which is a high lexical formalism. In order to apply language models based on link grammar in phrase-based models,the concept of linked phrases,an extension of the concept of traditional phrases in phrase-based models was brought out. Experiments were conducted and the results showed that the use of syntax-based language models could improve the performance of the phrase-based models greatly.
文摘<strong>Background:</strong> The Cox Proportional Hazard (Cox-PH) model has been a popularly used method for survival analysis of cancer data given the survival times as a function of covariates or risk factors. However, it is very seldom to see the assumptions for the application of the Cox-PH model satisfied in most of the research studies, raising questions about the effectiveness, robustness, and accuracy of the model predicting the proportion of survival times. This is because the necessary assumptions in most cases are difficult to satisfy, as well as the assessment of interaction among covariates. <strong>Methods:</strong> To further improve the therapeutic/treatment strategy for cancer diseases, we proposed a new approach to survival analysis using multiple myeloma (MM) cancer data. We first developed a data-driven nonlinear statistical model that predicts the survival times with 93% accuracy. We then performed a parametric analysis on the predicted survival times to obtain the survival function which is used in estimating the proportion of survival times. <strong>Results:</strong> The new proposed approach for survival analysis has proved to be more robust and gives better estimates of the proportion of survival than the Cox-PH model. Also, satisfying the proposed model assumptions and finding interactions among risk factors is less difficult compared to the Cox-PH model. The proposed model can predict the real values of the survival times and the identified risk factors are ranked according to the percent of contribution to the survival time. <strong>Conclusion:</strong> The new proposed nonlinear statistical model approach for survival analysis of cancer diseases is very efficient and provides an improved and innovative strategy for cancer therapeutic/treatment.
文摘The rapid increase in Water Temperature Rivers (WTR) observed globally in recent decades and projections for the coming decades under climate change scenarios make water temperature prediction essential to assess changes in aquatic biota. Statistical models for stream temperature prediction have been widely used because they are computationally simple, involve few parameters, and because of their relatively good accuracy. However, these models have not been evaluated in Peruvian Andean rivers. This work evaluates the main water temperature statistical models from the literature and fits them with data recorded in the Ichu River experimental watershed, Huancavelica-Peru. Three well-known models were reviewed: the Stefan & Preud’homme linear regression model and the Mohseni & Stefan 3- and 4-parameter logistic regression models. Ichu river water temperatures were simulated using the SWAT (Soil and Water Assessment Tool) hydrometeorological model, which defaults to the Stefan & Preud’homme model. Modifications and adjustment of coefficients of the evaluated models were configured in the SWAT code using the “Latin Hypercube Sampling” technique. The evaluated models showed poor performance in predicting the water temperature in the Ichu River with NSE (Nash-Sutcliffe Efficiency) values ranging from -2.6 to 0.49, while the modified models showed NSE values of 0.72 in all three cases. Findings suggest that the statistical models shown in the literature should be validated for Andean rivers.