Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ...The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.展开更多
This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement sp...This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to...Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.展开更多
Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is sign...Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is significant to comprehend the factors motivating women to become entrepreneurs.The non-understanding of the factors can result in the endurance of low living stan-dards and the design of expensive and ineffectual policies.But female involve-ment in entrepreneurship becomes higher in developing economies compared to developed economies.Women Entrepreneurship Index(WEI)plays a vital role in determining the factors that enable theflourishment of high potential female entrepreneurs which enhances economic welfare and contributes to the economic and social fabric of society.Therefore,it is needed to design an automated and accurate WEI prediction model to improve women’s entrepreneurship.In this view,this article develops an automated statistical analysis enabled WEI predic-tive(ASA-WEIP)model.The proposed ASA-WEIP technique aims to effectually determine the WEI.The proposed ASA-WEIP technique encompasses a series of sub-processes such as pre-processing,WEI prediction,and parameter optimiza-tion.For the prediction of WEI,the ASA-WEIP technique makes use of the Deep Belief Network(DBN)model,and the parameter optimization process takes place using Squirrel Search Algorithm(SSA).The performance validation of the ASA-WEIP technique was executed using the benchmark dataset from the Kaggle repo-sitory.The experimental outcomes stated the better outcomes of the ASA-WEIP technique over the other existing techniques.展开更多
Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore ...Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%.展开更多
This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this resear...This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.展开更多
The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large am...The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large amount of measured data is established to predict the path loss in the Railway 5G marshalling yard scenario.According to the different characteristics of base station directional antennas,the antenna gain is verified.Then we propose the position of the breakpoint in the antenna propagation area,and based on the breakpoint segmentation,a large-scale statistical model for marshalling yards is established.展开更多
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be...COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.展开更多
Success or failure of an E-commerce platform is often reduced to its ability to maximize the conversion rate of its visitors. This is commonly regarded as the capacity to induce a purchase from a visitor. Visitors pos...Success or failure of an E-commerce platform is often reduced to its ability to maximize the conversion rate of its visitors. This is commonly regarded as the capacity to induce a purchase from a visitor. Visitors possess individual characteristics, histories, and objectives which complicate the choice of what platform features that maximize the conversion rate. Modern web technology has made clickstream data accessible allowing a complete record of a visitor’s actions on a website to be analyzed. What remains poorly constrained is what parts of the clickstream data are meaningful information and what parts are accidental for the problem of platform design. In this research, clickstream data from an online retailer was examined to demonstrate how statistical modeling can improve clickstream information usage. A conceptual model was developed that conjectured relationships between visitor and platform variables, visitors’ platform exit rate, boune rate, and decision to purchase. Several hypotheses on the nature of the clickstream relationships were posited and tested with the models. A discrete choice logit model showed that the content of a website, the history of website use, and the exit rate of pages visited had marginal effects on derived utility for the visitor. Exit rate and bounce rate were modeled as beta distributed random variables. It was found that exit rate and its variability for pages visited were associated with site content, site quality, prior visitor history on the site, and technological preferences of the visitor. Bounce rate was also found to be influenced by the same factors but was in a direction opposite to the registered hypotheses. Most findings supported that clickstream data is amenable to statistical modeling with interpretable and comprehensible models.展开更多
Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is define...Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.展开更多
The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multipl...The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches inc...The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo...With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.展开更多
An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods ...An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.展开更多
In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then...In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.展开更多
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
文摘The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.
文摘This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
文摘Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.
文摘Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is significant to comprehend the factors motivating women to become entrepreneurs.The non-understanding of the factors can result in the endurance of low living stan-dards and the design of expensive and ineffectual policies.But female involve-ment in entrepreneurship becomes higher in developing economies compared to developed economies.Women Entrepreneurship Index(WEI)plays a vital role in determining the factors that enable theflourishment of high potential female entrepreneurs which enhances economic welfare and contributes to the economic and social fabric of society.Therefore,it is needed to design an automated and accurate WEI prediction model to improve women’s entrepreneurship.In this view,this article develops an automated statistical analysis enabled WEI predic-tive(ASA-WEIP)model.The proposed ASA-WEIP technique aims to effectually determine the WEI.The proposed ASA-WEIP technique encompasses a series of sub-processes such as pre-processing,WEI prediction,and parameter optimiza-tion.For the prediction of WEI,the ASA-WEIP technique makes use of the Deep Belief Network(DBN)model,and the parameter optimization process takes place using Squirrel Search Algorithm(SSA).The performance validation of the ASA-WEIP technique was executed using the benchmark dataset from the Kaggle repo-sitory.The experimental outcomes stated the better outcomes of the ASA-WEIP technique over the other existing techniques.
基金funded by the"Genetic improvement of pig survival"project from Danish Pig Levy Foundation (Aarhus,Denmark)The China Scholarship Council (CSC)for providing scholarship to the first author。
文摘Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%.
文摘This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2022JBXT001in part by NS⁃FC under Grant No.62171021+1 种基金in part by the Project of China State Rail⁃way Group under Grant No.P2021G012in part by ZTE Industry⁃University⁃Institute Cooperation Funds under Grant No.I21L00220.
文摘The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large amount of measured data is established to predict the path loss in the Railway 5G marshalling yard scenario.According to the different characteristics of base station directional antennas,the antenna gain is verified.Then we propose the position of the breakpoint in the antenna propagation area,and based on the breakpoint segmentation,a large-scale statistical model for marshalling yards is established.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0525.
文摘COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.
文摘Success or failure of an E-commerce platform is often reduced to its ability to maximize the conversion rate of its visitors. This is commonly regarded as the capacity to induce a purchase from a visitor. Visitors possess individual characteristics, histories, and objectives which complicate the choice of what platform features that maximize the conversion rate. Modern web technology has made clickstream data accessible allowing a complete record of a visitor’s actions on a website to be analyzed. What remains poorly constrained is what parts of the clickstream data are meaningful information and what parts are accidental for the problem of platform design. In this research, clickstream data from an online retailer was examined to demonstrate how statistical modeling can improve clickstream information usage. A conceptual model was developed that conjectured relationships between visitor and platform variables, visitors’ platform exit rate, boune rate, and decision to purchase. Several hypotheses on the nature of the clickstream relationships were posited and tested with the models. A discrete choice logit model showed that the content of a website, the history of website use, and the exit rate of pages visited had marginal effects on derived utility for the visitor. Exit rate and bounce rate were modeled as beta distributed random variables. It was found that exit rate and its variability for pages visited were associated with site content, site quality, prior visitor history on the site, and technological preferences of the visitor. Bounce rate was also found to be influenced by the same factors but was in a direction opposite to the registered hypotheses. Most findings supported that clickstream data is amenable to statistical modeling with interpretable and comprehensible models.
文摘Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.
基金supported by the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ200607)China NSF Grants(Grant No.61631020)+1 种基金Aeronautical Science Foundation of China(Grant No.2017ZC52021)Open Foundation for Graduate Innovation of NUAA(Grant No.kfjj20170405 and kfjj20180408)
文摘The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
基金Supported by the High Technology Research and Development Program of China (863 Program,No2006AA100301)
文摘The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金This study was funded by the National Natural Science Foundation of China(Grant No.41975027)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171457)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disasters(Grant No.2017YFC1501401).
文摘With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.
文摘An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia has funded this project under Grant No.(G-102-130-1443).
文摘In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.