期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Meta-Learning of Evolutionary Strategy for Stock Trading
1
作者 Erik Sorensen Ryan Ozzello +3 位作者 Rachael Rogan Ethan Baker Nate Parks Wei Hu 《Journal of Data Analysis and Information Processing》 2020年第2期86-98,共13页
Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional m... Meta-learning algorithms learn about the learning process itself so it can speed up subsequent similar learning tasks with fewer data and iterations. If achieved, these benefits expand the flexibility of traditional machine learning to areas where there are small windows of time or data available. One such area is stock trading, where the relevance of data decreases as time passes, requiring fast results on fewer data points to respond to fast-changing market trends. We, to the best of our knowledge, are the first to apply meta-learning algorithms to an evolutionary strategy for stock trading to decrease learning time by using fewer iterations and to achieve higher trading profits with fewer data points. We found that our meta-learning approach to stock trading earns profits similar to a purely evolutionary algorithm. However, it only requires 50 iterations during test, versus thousands that are typically required without meta-learning, or 50% of the training data during test. 展开更多
关键词 meta-learning maml REPTILE Machine Learning NATURAL EVOLUTIONARY Strategy STOCK TRADING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部