期刊文献+
共找到583篇文章
< 1 2 30 >
每页显示 20 50 100
Experts' Knowledge Fusion in Model-Based Diagnosis Based on Bayes Networks 被引量:5
1
作者 Deng Yong & Shi Wenkang School of Electronics & Information Technology, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期25-30,共6页
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ... In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge. 展开更多
关键词 model-based diagnosis Experts' knowledge Probabilistic assumption-based reasoning Bayes networks.
下载PDF
Nonlinear online process monitoring and fault diagnosis of condenser based on kernel PCA plus FDA 被引量:5
2
作者 张曦 阎威武 +1 位作者 赵旭 邵惠鹤 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期51-56,共6页
A novel online process monitoring and fault diagnosis method of condenser based on kernel principle component analysis (KPCA) and Fisher discriminant analysis (FDA) is presented. The basic idea of this method is:... A novel online process monitoring and fault diagnosis method of condenser based on kernel principle component analysis (KPCA) and Fisher discriminant analysis (FDA) is presented. The basic idea of this method is: First map data from the original space into high-dimensional feature space via nonlinear kernel function and then extract optimal feature vector and discriminant vector in feature space and calculate the Euclidean distance between feature vectors to perform process monitoring. Similar degree between the present discriminant vector and optimal discriminant vector of fault in historical dataset is used for diagnosis. The proposed method can effectively capture the nonlinear relationship among process variables. Simulating results of the turbo generator's fault data set prove that the proposed method is effective. 展开更多
关键词 NONLINEAR kernel PCA FDA process monitoring fault diagnosis CONDENSER
下载PDF
An Interpretable Denoising Layer for Neural Networks Based on Reproducing Kernel Hilbert Space and its Application in Machine Fault Diagnosis 被引量:4
3
作者 Baoxuan Zhao Changming Cheng +3 位作者 Guowei Tu Zhike Peng Qingbo He Guang Meng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期104-114,共11页
Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ... Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments. 展开更多
关键词 Machine fault diagnosis Reproducing kernel Hilbert space(RKHS) Regularization problem Denoising layer Neural network
下载PDF
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
4
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 IMPROVED kernel K-Mean CLUSTER FAULT diagnosis ROLLER BEARING
下载PDF
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:1
5
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
下载PDF
Application of Kernel GDA to Performance Monitoring and Fault Diagnosis for Rotating Machinery
6
作者 马思乐 张曦 邵惠鹤 《Journal of Donghua University(English Edition)》 EI CAS 2010年第5期709-714,共6页
Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on ker... Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery. 展开更多
关键词 kernel generalized discriminant analysis(KGDA) performance monitoring fault diagnosis rotating machinery
下载PDF
MODIFIED LAPLACIAN EIGENMAP ETHOD FOR FAULT DIAGNOSIS 被引量:9
7
作者 JIANG Quansheng JIA Minping +1 位作者 HU Jianzhong XU Feiyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期90-93,共4页
A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric ... A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric distance in the neighbor graph construction, the method can preserve the consistency of local neighbor information and effectively extract the low-dimensional manifold features embedded in the high-dimensional nonlinear data sets. A nonlinear dimensionality reduction algorithm based on the improved Laplacian eigenmap is to directly learn high-dimensional fault signals and extract the intrinsic manifold features from them. The method greatly preserves the global geometry structure information embedded in the signals, and obviously improves the classification performance of fault pattern recognition. The experimental results on both simulation and engineering indicate the feasibility and effectiveness of the new method. 展开更多
关键词 Laplacian eigenmap kernel trick Fault diagnosis Manifold learning
下载PDF
Aircraft Engine Gas Path Fault Diagnosis Based on Hybrid PSO-TWSVM 被引量:6
8
作者 Du Yanbin Xiao Lingfei +1 位作者 Chen Yusheng Ding Runze 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期334-342,共9页
Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is intr... Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%. 展开更多
关键词 aircraft engines FAULT diagnosis TWIN support VECTOR machine (TWSVM) hybrid PARTICLE SWARM optimization (HPSO) algorithm mixed kernel function
下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:10
9
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes 被引量:2
10
作者 Jiaxin Zhang Wenjia Luo +1 位作者 Yiyang Dai Yuman Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期54-70,共17页
Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(... Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path. 展开更多
关键词 Cycle temporal algorithm Fault diagnosis Dynamic kernel principal component analysis Multiway dynamic kernel principal component analysis Reconstruction-based contribution
下载PDF
Fault diagnosis method of train control RBC system based on KPCA-SOM network 被引量:3
11
作者 LI Yang-qing LIN Hai-xiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期161-168,共8页
Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.... Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved. 展开更多
关键词 radio block center(RBC)system fault diagnosis self-organizing map(SOM) kernel principal component(KPCA)
下载PDF
Fault diagnosis method of track circuit based on KPCA-SAE 被引量:2
12
作者 JIN Zuchen DONG Yu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期89-95,共7页
At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to an... At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy. 展开更多
关键词 ZPW-2000 track circuit fault diagnosis stacked auto-encoder(SAE) kernel principal component analysis(KPCA)
下载PDF
Online Contribution Rate Based Fault Diagnosis for Nonlinear Industrial Pro cesses 被引量:12
13
作者 PENG Kai-Xiang ZHANG Kai LI Gang 《自动化学报》 EI CSCD 北大核心 2014年第3期423-430,共8页
在过去的十年,核主管部件分析(KPCA ) 在监视区域的数据驱动的过程相当流行地出现了。庞大的工作被做了显示出它的简洁,可行性,和有效性。然而,核诡计的介绍使直接为差错诊断采用传统的贡献阴谋不可能。在这份报纸,根据重游并且分... 在过去的十年,核主管部件分析(KPCA ) 在监视区域的数据驱动的过程相当流行地出现了。庞大的工作被做了显示出它的简洁,可行性,和有效性。然而,核诡计的介绍使直接为差错诊断采用传统的贡献阴谋不可能。在这份报纸,根据重游并且分析存在, KPCA 相关的诊断来临,新贡献率基于方法被建议它能清楚地解释有缺点的变量。而且,为联机非线性的诊断的一个计划被建立。最后,连续搅动的坦克反应堆(CSTR ) 上的案例研究基准被使用存取新方法论的有效性,在有传统的线性方法的比较也被包含的地方。 展开更多
关键词 故障诊断 非线性 搅拌釜式反应器 工业 费率 核主成分分析 KPCA 数据驱动
下载PDF
Application of SABO-VMD-KELM in Fault Diagnosis of Wind Turbines
14
作者 Yuling HE Hao CUI 《Mechanical Engineering Science》 2023年第2期23-29,共7页
In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme ... In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme Learning Machine(KELM)is proposed.Firstly,the SABO algorithm was used to optimize the VMD parameters and decompose the original signal to obtain the best modal components,and then the nine features were calculated to obtain the feature vectors.Secondly,the SABO algorithm was used to optimize the KELM parameters,and the training set and the test set were divided according to different proportions.The results were compared with the optimized model without SABO algorithm.The experimental results show that the fault diagnosis method of wind turbine based on SABO-VMD-KELM model can achieve fault diagnosis quickly and effectively,and has higher accuracy. 展开更多
关键词 Wind turbine generator Fault diagnosis Subtraction-Average-Based Optimizer(SABO) Variational Mode Decomposition(VMD) kernel Extreme Learning Machine(KELM)
下载PDF
Kernel PCA与BP神经网络相结合的变压器故障诊断 被引量:3
15
作者 胡青 杜林 +1 位作者 杨丽君 孙才新 《计算机应用研究》 CSCD 北大核心 2010年第2期580-581,共2页
为了提高变压器故障诊断的准确率和抗干扰能力,提出一种基于核特征量的BP神经网络故障诊断模型。通过核主成分分析将故障样本从低维的特征空间非线性地映射到高维的核空间,提高了样本的可分性,然后以核特征量作为BP神经网络的输入特征量... 为了提高变压器故障诊断的准确率和抗干扰能力,提出一种基于核特征量的BP神经网络故障诊断模型。通过核主成分分析将故障样本从低维的特征空间非线性地映射到高维的核空间,提高了样本的可分性,然后以核特征量作为BP神经网络的输入特征量,建立变压器故障诊断模型。实验对比了结构相似、输入量不同的BP神经网络,结果表明采用核特征量的诊断模型具有更好的诊断效果和抗干扰能力。 展开更多
关键词 核主成分分析 BP神经网络 电力变压器 故障诊断
下载PDF
基于SPSO优化Multiple Kernel-TWSVM的滚动轴承故障诊断 被引量:7
16
作者 徐冠基 曾柯 柏林 《振动.测试与诊断》 EI CSCD 北大核心 2019年第5期973-979,1130,共8页
双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式... 双子支持向量机(twin support vector machine,简称TWSVM)的核函数选择对其分类性能有着重要影响,TWSVM其核函数一般是局部核函数或者全局核函数,这两种核函数的泛化能力和分类性能不能兼顾。笔者利用综合加权的高斯局部核函数和多项式全局核函数方法组成双核函数来改进TWSVM以提高其泛化能力和分类性能,并采用简化粒子群优化(simple particle swarm optimization,简称SPSO)方法来对权值和参数进行优化,提出了SPSO优化Multiple Kernel-TWSVM模型,将该模型应用到滚动轴承故障诊断模式识别中。实验结果表明,双核TWSVM比单核TWSVM和反向传播(back propagation,简称BP)神经网络具有更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 相空间重构 简化粒子群优化 双核双子支持向量机
下载PDF
多策略改进黏菌算法阶段优化HSVM变压器故障辨识 被引量:2
17
作者 谢国民 林忠宝 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期67-76,共10页
为解决变压器故障诊断精度较低的问题,提出了一种多策略改进黏菌算法(ISMA)阶段优化混合核支持向量机(HSVM)的变压器故障诊断新方法。首先,利用主成分分析(PCA)来消除变量之间的信息冗余并降低数据集维度。其次,引入黏菌算法(SMA),并结... 为解决变压器故障诊断精度较低的问题,提出了一种多策略改进黏菌算法(ISMA)阶段优化混合核支持向量机(HSVM)的变压器故障诊断新方法。首先,利用主成分分析(PCA)来消除变量之间的信息冗余并降低数据集维度。其次,引入黏菌算法(SMA),并结合Logistic混沌映射、二次插值、自适应权重多策略改进SMA,以提高SMA算法收敛速度和局部搜索能力;然后,与原始SMA、WHO和GWO算法进行寻优测试,对比验证改进后SMA算法的优越性;最后,使用改进SMA算法分阶段对混合核支持向量机参数寻优,构建ISMA-HSVM变压器故障诊断模型。将降维后的特征数据输入HSVM模型与BPPN、ELM和SVM进行比较,HSVM模型的诊断准确性分别提高了5.55%、8.89%、5.55%。使用ISMA优化HSVM模型参数,与WHO、GWO、SMA算法优化效果比较,结果准确性提高了13.33%、12.22%、5.55%。其中,ISMA-HSVM模型的诊断精度为93.33%。实验结果表明,所提模型有效提升故障诊断分类性能,且具有较高的故障诊断精度。 展开更多
关键词 故障诊断 主成分分析 黏菌算法 混合核支持向量机
下载PDF
流程生产安全数智化监测系统传感器故障诊断研究
18
作者 张建荣 张伟 +1 位作者 赵挺生 苗雨 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期34-41,共8页
为保障流程生产安全监测数据的准确性,提出1种结合核主元分析和累积残差贡献率法的故障诊断方法。首先提出“感知-汇聚-决策”的多层级数智化监控系统架构;针对感知层传感器,基于核主元分析构建故障检测模型并通过累积残差贡献率法定位... 为保障流程生产安全监测数据的准确性,提出1种结合核主元分析和累积残差贡献率法的故障诊断方法。首先提出“感知-汇聚-决策”的多层级数智化监控系统架构;针对感知层传感器,基于核主元分析构建故障检测模型并通过累积残差贡献率法定位故障传感器;以DYTG转炉厂连铸作业区进行实证分析。研究结果表明:该故障诊断方法在SPE指标上的平均检测率和平均误检率分别为95.28%和2.61%,在T^(2)指标上的平均检测率和平均误检率分别为84.36%和1.71%,且针对4种故障形式均能精准定位故障传感器。研究结果有助于降低监测系统的维护成本,提升流程生产安全管控水平。 展开更多
关键词 流程生产 传感器 故障诊断 核主元分析 累积残差
下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:1
19
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
行星齿轮箱降噪能力A-CNN模型及其智能诊断
20
作者 魏峰 张新明 安文臣 《机械设计与制造》 北大核心 2024年第11期237-240,共4页
为了降低随机噪声对行星齿轮箱振动信号造成的干扰,设计了一种采用卷积神经网络(A-CNN)算法的行星齿轮箱故障诊断,可以实现对噪声的良好抗干扰性能,采用A-CNN进行处理时可以通过Dropout实现输入信号的随机干扰,再以多尺度卷积核模块完... 为了降低随机噪声对行星齿轮箱振动信号造成的干扰,设计了一种采用卷积神经网络(A-CNN)算法的行星齿轮箱故障诊断,可以实现对噪声的良好抗干扰性能,采用A-CNN进行处理时可以通过Dropout实现输入信号的随机干扰,再以多尺度卷积核模块完成干扰信号开展特征分析和多尺度特征学习的过程。研究结果表明:采用Dropout处理信号后能够大幅提升模型抗噪性能,当设置3dB强噪条件时提升近10%。当噪声强度低于6dB时,(15×15)卷积核获得比了比(7×7)卷积核更优的效果。当噪声水平上升后,测试模型准确率降低。与其它算法进行比较可知,设计的A-CNN算法在各噪声水平测试集都达到了最优性能。当受到3dB强噪干扰时,A-CNN可以获得比AlexNet提升20%准确率,并且与VGG相比也可以提升近10%准确率。 展开更多
关键词 行星齿轮箱 噪声干扰 输入Dropout 多尺度卷积核 故障诊断
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部