Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven method...Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.展开更多
The model-driven inversion method and data-driven prediction method are eff ective to obtain velocity and density from seismic data.The former necessitates initial models and cannot provide high-resolution inverted pa...The model-driven inversion method and data-driven prediction method are eff ective to obtain velocity and density from seismic data.The former necessitates initial models and cannot provide high-resolution inverted parameters because it primarily employs medium-frequency information from seismic data.The latter can predict parameters with high resolution,but it require a signifi cant number of accurate training samples,which are typically in limited supply.To solve the problems mentioned for these two methods,we propose a model-data-driven AVO inversion method based on multiple objective functions.The proposed method implements network training,network optimization,and network inversion by using three independent objective functions.Tests on synthetic and fi eld data show that the proposed method can invert high-accuracy and high-resolution velocity and density with a few training samples.展开更多
As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this prob...As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.展开更多
基金financially supported by the Important National Science&Technology Specific Project of China(Grant No.2017ZX05018-005)
文摘Model-driven and data-driven inversions are two prominent methods for obtaining P-wave impedance,which is significant in reservoir description and identification.Based on proper initial models,most model-driven methods primarily use the limited frequency bandwidth information of seismic data and can invert P-wave impedance with high accuracy,but not high resolution.Conventional data-driven methods mainly employ the information from well-log data and can provide high-accuracy and highresolution P-wave impedance owing to the superior nonlinear curve fitting capacity of neural networks.However,these methods require a significant number of training samples,which are frequently insufficient.To obtain P-wave impedance with both high accuracy and high resolution,we propose a model-data-driven inversion method using Res Nets and the normalized zero-lag cross-correlation objective function which is effective for avoiding local minima and suppressing random noise.By using initial models and training samples,the proposed model-data-driven method can invert P-wave impedance with satisfactory accuracy and resolution.Tests on synthetic and field data demonstrate the proposed method’s efficacy and practicability.
基金financially supported by the Important National Science and Technology Specific Project of China (Grant No. 2016ZX05047-002)
文摘The model-driven inversion method and data-driven prediction method are eff ective to obtain velocity and density from seismic data.The former necessitates initial models and cannot provide high-resolution inverted parameters because it primarily employs medium-frequency information from seismic data.The latter can predict parameters with high resolution,but it require a signifi cant number of accurate training samples,which are typically in limited supply.To solve the problems mentioned for these two methods,we propose a model-data-driven AVO inversion method based on multiple objective functions.The proposed method implements network training,network optimization,and network inversion by using three independent objective functions.Tests on synthetic and fi eld data show that the proposed method can invert high-accuracy and high-resolution velocity and density with a few training samples.
文摘As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.