The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a...In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved slidi...In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.展开更多
Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This p...Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.展开更多
A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension...A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.展开更多
Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train ...Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.展开更多
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ...The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of...In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method.展开更多
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ...A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.展开更多
Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is ...Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.展开更多
To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err...To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.展开更多
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then ...A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.展开更多
A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free,...A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
基金supported in part by the National Natural Science Foundation of China(U1804147,61833001,61873139,61573129)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2)the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)。
文摘In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
文摘In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.
基金Sponsored by the National Natural Science Foundation of China(No.51605415)Natural Science Foundation of Hebei Province(No.F2016203494,E2017203240)。
文摘Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102007)the Fundamental Research Fund for the Central Universities(Grant No.YWF-14-YHXY-012)
文摘A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.
基金The authors thank the anonymous reviewers for their valuable suggestions.This work is supported by funds National Natural Science Foundation of China(Grants No.52162048,61991404 and 62003138)National Key Research and Development Program of China(Grant No.2020YFB1713703)Jiangxi Graduate Innovation Fund Project(Grant No.YC2021-S446).
文摘Aiming at the robustness issue in high-speed trains(HSTs)operation control,this article proposes a model-free adaptive control(MFAC)scheme to suppress disturbance.Firstly,the dynamic linearization data model of train system under the action of measurement disturbance is given,and the Kalman filter(KF)based on this model is derived under the minimum variance estimation criterion.Then,according to the KF,an anti-interference MFAC scheme is designed.This scheme only needs the input and output data of the controlled system to realize the MFAC of the train under strong disturbance.Finally,the simulation experiment of CRH380A HSTs is carried out and compared with the traditional MFAC and the MFAC with attenuation factor.The proposed control algorithm can effectively suppress the measurement disturbance,and obtain smaller tracking error and larger signal to noise ratio with better applicability.
基金Basic Research Program of Ministry of Industry and Information Technology of China(Grant No.B2420133003)National Natural Science Foundation of China(Grant Nos.51779060,51679054)
文摘The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
文摘In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method.
文摘A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.
文摘Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.
文摘To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
文摘A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.
文摘A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.