Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a ...Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the展开更多
Flexible filamentous particles are a special kind of particles and play a significant role in many industrial processes. The mixing dynamics of flexible filamentous particles in the transverse section of a rotary drum...Flexible filamentous particles are a special kind of particles and play a significant role in many industrial processes. The mixing dynamics of flexible filamentous particles in the transverse section of a rotary drum were analyzed numerically in two dimensions. First, a chain model of slender bodies was introduced for particle dynamic studies, and each individual particle as well as each segment of the particle was tracked during the process. Then, the bulk movement of particles in the transverse section of a rotary drum was explored numerically and mixing dynamics of the particles were further investigated with visual representation. To quantify the quality of mixing, the mixing rates were investigated to determine the mixing extent of particles in the rotary drum. Furthermore, the effects of rotational velocity, flight height and filling degree on mixing dynamics were examined in detail. Moreover, the numerical results were compared with experimental data, and reasonable agreements were obtained, The numerical analyses provide valuable insights into the mixing dynamics of flexible filamentous particles.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41475039]the National Basic Research Program of China[grant number 2015CB953601]
文摘Cloud radiative processes are important in regulating weather and climate. Precipitation responses to radiative processes of water- and ice-clouds are investigated by analyzing mean equilibrium simulation data from a series of two-dimensional cloud-resolving model sensitivity experiments in this study. The model is imposed by zero vertical velocity.The exclusion of water radiative processes in the presence of ice radiative processes, as well as the removal of ice radiative processes, enhances tropospheric Iongwave radiative cooling and lowers air temperature and the saturation mixing ratio. The reduction in the saturation mixing ratio leads to an increase in vapor condensation and an associated release of latent heat, which increases rainfall. The elimination of water radiative processes strengthens local atmospheric warming Iongwave radiative cooling. The enhanced warming melting of graupel, which increases rainfa n the upper troposphere via a reduction in ncreases the rain source via an increase in the
基金supports from the Fundamental Research Funds for the Central Universities(No.2010QNA12)China Postdoctoral Science Foundation funded project(No.2012M511334)+1 种基金Talent Development Foundation of China University of Mining and TechnologySAIL Plan of China University of Mining and Technologyare sincerely acknowledged
文摘Flexible filamentous particles are a special kind of particles and play a significant role in many industrial processes. The mixing dynamics of flexible filamentous particles in the transverse section of a rotary drum were analyzed numerically in two dimensions. First, a chain model of slender bodies was introduced for particle dynamic studies, and each individual particle as well as each segment of the particle was tracked during the process. Then, the bulk movement of particles in the transverse section of a rotary drum was explored numerically and mixing dynamics of the particles were further investigated with visual representation. To quantify the quality of mixing, the mixing rates were investigated to determine the mixing extent of particles in the rotary drum. Furthermore, the effects of rotational velocity, flight height and filling degree on mixing dynamics were examined in detail. Moreover, the numerical results were compared with experimental data, and reasonable agreements were obtained, The numerical analyses provide valuable insights into the mixing dynamics of flexible filamentous particles.