Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca...Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.展开更多
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ...We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.展开更多
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
This research uses both three-dimensional(3D)modeling and geologic well control to piece back together the architectural parts of the Late Cretaceous formations.The goal is to figure out the sizes,directions,locations...This research uses both three-dimensional(3D)modeling and geologic well control to piece back together the architectural parts of the Late Cretaceous formations.The goal is to figure out the sizes,directions,locations,and controls of the layers of the fluvial sandstone reservoirs.Sequence stratigraphy is essential for 3D reservoir modeling and petroleum geology understanding in the Bahga oilfield.The purpose of this work is to create a static model that shows the layers and facies distribution in the reservoir interval.We will use data from nine well logs and 22 seismic lines calibrated by the Abu Roash G Member reservoir core intervals to accomplish this.The petrophysical study discovered three parts in the Abu Roash G Member reservoir rock:channel fill that is affected by tides,channel fill that is dominated by tides(intertidal sands),and channel top with lenticular bedded sandstone.The model's findings point to the existence of an NNW-oriented sand body,which could be a prime location to produce hydrocarbons.The original oil in place(OOIP)is about 3,438,279 Stock Tank Barrels(STB),and the oil reserve reaches up to 1,031,484(STB).Sequence stratigraphic analysis using seismic and well log information(SB)reveals that the Upper Cretaceous AR/G reservoir of the Bahga field is characterized by third-and fourth-order stratigraphic sequences,which are constrained by three Maximum Flooding Surfaces(MFS)and two Sequence Boundaries.The integration of the derived geological model and sequence stratigraphic results can lower future extraction risk by identifying the locations and trends of the geologic facies with the necessary petrophysical properties for the hydrocarbon accumulations.展开更多
为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural...为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。展开更多
基金supported by the National Natural Science Foundation of China(11871238,11931019,12371486)。
文摘Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.
基金Equinor for financing the R&D projectthe Institute of Science and Technology of Petroleum Geophysics of Brazil for supporting this research。
文摘We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
文摘This research uses both three-dimensional(3D)modeling and geologic well control to piece back together the architectural parts of the Late Cretaceous formations.The goal is to figure out the sizes,directions,locations,and controls of the layers of the fluvial sandstone reservoirs.Sequence stratigraphy is essential for 3D reservoir modeling and petroleum geology understanding in the Bahga oilfield.The purpose of this work is to create a static model that shows the layers and facies distribution in the reservoir interval.We will use data from nine well logs and 22 seismic lines calibrated by the Abu Roash G Member reservoir core intervals to accomplish this.The petrophysical study discovered three parts in the Abu Roash G Member reservoir rock:channel fill that is affected by tides,channel fill that is dominated by tides(intertidal sands),and channel top with lenticular bedded sandstone.The model's findings point to the existence of an NNW-oriented sand body,which could be a prime location to produce hydrocarbons.The original oil in place(OOIP)is about 3,438,279 Stock Tank Barrels(STB),and the oil reserve reaches up to 1,031,484(STB).Sequence stratigraphic analysis using seismic and well log information(SB)reveals that the Upper Cretaceous AR/G reservoir of the Bahga field is characterized by third-and fourth-order stratigraphic sequences,which are constrained by three Maximum Flooding Surfaces(MFS)and two Sequence Boundaries.The integration of the derived geological model and sequence stratigraphic results can lower future extraction risk by identifying the locations and trends of the geologic facies with the necessary petrophysical properties for the hydrocarbon accumulations.
文摘为从系统整体角度完成对起落架收放系统的风险辨识和影响分析,将系统理论过程分析(Systematic Theory Process Analysis,STPA)与决策实验室分析-解释结构模型(Decision Making Trial and Evaluation Laboratory Interpretive Structural Modeling,DEMATEL-ISM)相结合来开展分析。首先,定义事故和系统级危险,以民机进近阶段放下起落架为例,运用STPA完成对风险因素的系统化辨识;其次,基于最大平均熵减(Maximum Mean De-entropy,MMDE)算法帮助DEMATEL-ISM模型确定阈值,完成对风险因素影响的重要性分析并识别可能引发系统级危险的风险传递路径,据此挖掘关键致因场景,以给出风险预防建议。结果显示:线路性能退化或失效、位置作动控制组件(Position Action Control Unit,PACU)核心处理器故障为关键原因因素,收放作动筒作动异常、机组成员操作不当、起落架指示灯显示异常、起落架液压选择阀作动异常、PACU信息接收有误为关键结果因素,这些因素均涉及多条可能引发系统级危险的风险传递路径,应予以重点控制。