A prodouct modeling and a process planning that are two essential basses of realizing concurrent engineering are investigated , a logical modeling technique , grammar representation scheme of technology knowledge and...A prodouct modeling and a process planning that are two essential basses of realizing concurrent engineering are investigated , a logical modeling technique , grammar representation scheme of technology knowledge and architecture of expert system for process planning within con- current engineering environment are proposed. They have been utilized in a real reaserch project.展开更多
Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquak...Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquake is a rare event with severe consequence,irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science,computer science and engineering,computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.展开更多
The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capaci...The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.展开更多
When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great signif...When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great significance to study the laser transmission in the fog. At present, the main method of calculating the scattering and attenuation characteristics of fog is based on the radiation transmission theory, which is realized by a large number of numerical calculations or physical simulation methods, which takes time and cannot meet the requirements for obtaining the fast and accurate results. Therefore, in this paper established are a new laser forward attenuation model and backward attenuation model in low visibility fog. It is found that in low visibility environments, the results calculated by the Monte Carlo method are more accurate than those from most of the existing forward attenuation models. For the cases of 0.86-μm, 1.06-μm, 1.315-μm, 10.6-μm typical lasers incident on different fogs with different visibilities, a backscatter model is established, the error between the fitting result and the calculation result is analyzed, the backward attenuation fitting parameters of the new model are tested, and a more accurate fitting result is obtained.展开更多
Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the ...Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.展开更多
To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capab...To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.展开更多
Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to suppor...Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to support the industrial engineering and product development. How to use the new computer modeling and simulating technologies to support the product development and industrial engineering, is introduced especially. The support includes both domestic products and industrial systems. The visualization and computer technologies take a very impo[tant role in some system or multi-direction modeling, those technologies mentioned above can help the industrial engineers study the effect of design on the whole life circle, including the producing steps. So the engineers can avoid making the wrong decision which may cause bad effects on the whole industrial engineering.展开更多
A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinde...A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.展开更多
In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characte...In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.展开更多
Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of two...Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.展开更多
The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is ted...The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.展开更多
Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engin...Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-展开更多
By using the hypothesis of the deformation of the straight bar and beam in mechanics of materials,a new engineering calculating model for a linear inclusion in plane is presented.Through the Kelvin's solution of a...By using the hypothesis of the deformation of the straight bar and beam in mechanics of materials,a new engineering calculating model for a linear inclusion in plane is presented.Through the Kelvin's solution of a concentrated force,the inclusion problem is reduced to solving a set of uncoupled singular integral equations which can be solved by the numerical method of singular integral equation.Based on these results,several applicable examples including an inclusion-crack problem are calculated and the results are quite satisfactory.展开更多
A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segme...A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.展开更多
The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control ...The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control erosion. However, fully closed CDs cannot selectively trap sediment and may easily overflow, causing them to losing their ability to mediate and hold sediments. Previous studies proposed the concept of “breathable CDs”. The researcher introduced metal slit dam (SD) that could be assembled and disassembled quickly and conveniently. Once a CD reaches maximum capacity, operators must ensure that the water channels of the dam are free from blockage. Moreover, they must inspect the internal accumulation conditions of the dam periodically or immediately following heavy typhoon rains. When necessary, either the sediment buildup in the upriver blockage must be cleared, or the transverse structure of the dam must be removed to allow fine particles to be discharged along with a moderate amount of water. These actions can free up the sediment-storing capacity of the dam for the next heavy typhoon rains. In addition, operators should also inspect the damages inflicted on the dam, such as erosion, wear and tear, and deformation conditions. Damaged components should be disassembled and repaired if possible, or recycled and reused. The present study performed channel tests to simulate closed CDs, SDs, steel pipe dam (SPDs), and steel pipe plus slit dam (SPSDs) for 50-year and 100-year frequency floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs”, and the changes of moderated riverbeds.展开更多
基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud...基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。展开更多
Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna...This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.展开更多
文摘A prodouct modeling and a process planning that are two essential basses of realizing concurrent engineering are investigated , a logical modeling technique , grammar representation scheme of technology knowledge and architecture of expert system for process planning within con- current engineering environment are proposed. They have been utilized in a real reaserch project.
文摘Internationally earthquake insurance,like all other insurance (fire,auto),adopted actuarial approach in the past, which is,based on historical loss experience to determine insurance rate.Due to the fact that earthquake is a rare event with severe consequence,irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science,computer science and engineering,computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.
文摘The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61571355 and 61401342)。
文摘When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great significance to study the laser transmission in the fog. At present, the main method of calculating the scattering and attenuation characteristics of fog is based on the radiation transmission theory, which is realized by a large number of numerical calculations or physical simulation methods, which takes time and cannot meet the requirements for obtaining the fast and accurate results. Therefore, in this paper established are a new laser forward attenuation model and backward attenuation model in low visibility fog. It is found that in low visibility environments, the results calculated by the Monte Carlo method are more accurate than those from most of the existing forward attenuation models. For the cases of 0.86-μm, 1.06-μm, 1.315-μm, 10.6-μm typical lasers incident on different fogs with different visibilities, a backscatter model is established, the error between the fitting result and the calculation result is analyzed, the backward attenuation fitting parameters of the new model are tested, and a more accurate fitting result is obtained.
文摘Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.
基金The Basic Research of COSTIND,China (No.D0420060521)
文摘To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval.
文摘Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to support the industrial engineering and product development. How to use the new computer modeling and simulating technologies to support the product development and industrial engineering, is introduced especially. The support includes both domestic products and industrial systems. The visualization and computer technologies take a very impo[tant role in some system or multi-direction modeling, those technologies mentioned above can help the industrial engineers study the effect of design on the whole life circle, including the producing steps. So the engineers can avoid making the wrong decision which may cause bad effects on the whole industrial engineering.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2001AA501211).
文摘A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.
基金Project(7131109)supported by the National Defense Pre-research Foundation of ChinaProject(51175500)supported by the National Natural Science Foundation of China
文摘In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.
基金Supported by Tianjin Research Program of Application Foundation and Advanced Technology (No.12JCZDJC29200)Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.
文摘The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.
基金Research Grant Council of Hong Kong (GRF Project nos PolyU5331 /07E,PolyU5352 /08E)a grant from Ministry of Sciences and Technology,China (No 2006BAI22B00)
文摘Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-
基金The project supported by National Natural Science Foundation of China.
文摘By using the hypothesis of the deformation of the straight bar and beam in mechanics of materials,a new engineering calculating model for a linear inclusion in plane is presented.Through the Kelvin's solution of a concentrated force,the inclusion problem is reduced to solving a set of uncoupled singular integral equations which can be solved by the numerical method of singular integral equation.Based on these results,several applicable examples including an inclusion-crack problem are calculated and the results are quite satisfactory.
基金This project is supported by General Electric Company and National Advanced Technology Project of China(No.863-511-942-018).
文摘A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.
文摘The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control erosion. However, fully closed CDs cannot selectively trap sediment and may easily overflow, causing them to losing their ability to mediate and hold sediments. Previous studies proposed the concept of “breathable CDs”. The researcher introduced metal slit dam (SD) that could be assembled and disassembled quickly and conveniently. Once a CD reaches maximum capacity, operators must ensure that the water channels of the dam are free from blockage. Moreover, they must inspect the internal accumulation conditions of the dam periodically or immediately following heavy typhoon rains. When necessary, either the sediment buildup in the upriver blockage must be cleared, or the transverse structure of the dam must be removed to allow fine particles to be discharged along with a moderate amount of water. These actions can free up the sediment-storing capacity of the dam for the next heavy typhoon rains. In addition, operators should also inspect the damages inflicted on the dam, such as erosion, wear and tear, and deformation conditions. Damaged components should be disassembled and repaired if possible, or recycled and reused. The present study performed channel tests to simulate closed CDs, SDs, steel pipe dam (SPDs), and steel pipe plus slit dam (SPSDs) for 50-year and 100-year frequency floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs”, and the changes of moderated riverbeds.
文摘基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
文摘This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.