期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
A STUDY OF THE INFLUENCE OF MICROPHYSICAL PROCESSES ON TYPHOON NIDA(2016) USING A NEW DOUBLE-MOMENT MICROPHYSICS SCHEME IN THE WEATHER RESEARCH AND FORECASTING MODEL 被引量:5
1
作者 李喆 张玉涛 +2 位作者 刘奇俊 付仕佐 马占山 《Journal of Tropical Meteorology》 SCIE 2018年第2期123-130,共8页
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium... The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required. 展开更多
关键词 Liuma microphysics scheme typhoon intensity cloud microphysics typhoon structure Weather Research and forecasting model
下载PDF
A Methodological Study on Using Weather Research and Forecasting(WRF) Model Outputs to Drive a One-Dimensional Cloud Model
2
作者 JIN Ling Fanyou KONG +1 位作者 LEI Hengchi HU Zhaoxia 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期230-240,共11页
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ... A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept. 展开更多
关键词 cloud-seeding model Weather Research and forecasting (WRF) model rain enhancement
下载PDF
Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China:Lightning Activities and Storm Structure 被引量:7
3
作者 Wanli LI Xiushu QIE +2 位作者 Shenming FU Debin SU Yonghai SHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期85-100,共16页
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ... Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions. 展开更多
关键词 quasi-linear mesoscale convective system Weather Research and forecasting model Advanced Regional Prediction System model precipitation and non-precipitation ice
下载PDF
Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis 被引量:4
4
作者 杨瑞 刘毅 +1 位作者 冉令坤 张玉李 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期573-580,共8页
We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang, China during June 16–17, 2016. The model successfully simulated the rainfall area, precipitation intensit... We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang, China during June 16–17, 2016. The model successfully simulated the rainfall area, precipitation intensity, and changes in precipitation. We identified a clear wave signal using the two-dimensional fast Fourier transform method; the waves propagated westwards, with wavelengths of 45–20 km, periods of 50–120 min, and phase velocities mainly concentrated in the-25 m/s to-10 m/s range. The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves, peaking at 11:00 UTC, June 17, 2016. The gravity wave signal was identified along 79.17–79.93°E, 81.35–81.45°E and 81.5–81.83°E. The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h, indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts. 展开更多
关键词 gravity wave RAINSTORM spectral analysis methods weather research and forecasting model
下载PDF
Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China:Comparison of Two Microphysics Schemes 被引量:3
5
作者 Tuanjie HOU Hengchi LEI +2 位作者 Zhaoxia HU Jiefan YANG Xingyu LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期117-129,共13页
Using the Weather Research and Forecasting(WRF)model with two different microphysics schemes,the Predicted Particle Properties(P3)and the Morrison double-moment parameterizations,we simulated a stratiform rainfall eve... Using the Weather Research and Forecasting(WRF)model with two different microphysics schemes,the Predicted Particle Properties(P3)and the Morrison double-moment parameterizations,we simulated a stratiform rainfall event on 20–21 April 2010.The simulation output was compared with precipitation and aircraft observations.The aircraft-observed moderate-rimed dendrites and plates indicated that riming contributed significantly to ice particle growth at the mature precipitation stage.Observations of dendrite aggregation and capped columns suggested that aggregation coexisted with deposition or riming and played an important role in producing many large particles.The domain-averaged values of the 24-h surface precipitation accumulation from the two schemes were quite close to each other.However,differences existed in the temporal and spatial evolutions of the precipitation distribution.An analysis of the surface precipitation temporal evolution indicated faster precipitation in Morrison,while P3 indicated slower rainfall by shifting the precipitation pattern eastward toward what was observed.The differences in precipitation values between the two schemes were related to the cloud water content distribution and fall speeds of rimed particles.P3 simulated the stratiform precipitation event better as it captured the gradual transition in the mass-weighted fall speeds and densities from unrimed to rimed particles. 展开更多
关键词 stratiform cloud RIMING Weather Research and forecasting model fall speed
下载PDF
Impacts of Roof/Ground Mitigation Strategies on Improving the Urban Thermal Environment and Human Comfort over the Yangtze River Delta, China
6
作者 Hongyun MA Mi ZHANG +1 位作者 Haishan CHEN Yan WANG 《Journal of Meteorological Research》 SCIE CSCD 2024年第1期108-125,共18页
The combined effects of global warming and the urban heat islands exacerbate the risk of urban heat stress. It is crucial to implement effective cooling measures in urban areas to improve the comfort of the thermal en... The combined effects of global warming and the urban heat islands exacerbate the risk of urban heat stress. It is crucial to implement effective cooling measures in urban areas to improve the comfort of the thermal environment. In this study, the Weather Research and Forecasting Model(WRF), coupled with a single-layer Urban Canopy Model(UCM), was used to study the impact of heat mitigation strategies. In addition, a 5-km resolution land-cover dataset for China(ChinaLC), which is based on satellite remote sensing data, was adjusted and used, and 18 groups of numerical experiments were designed, to increase the albedo and vegetation fraction of roof/ground parameters. The experiments were conducted for four heatwave events that occurred in the summer of 2013 in the Yangtze River Delta urban agglomeration of China. The simulated results demonstrated that, for the single roof/ground schemes, the mitigation effects were directly proportional to the albedo and greening. Among all the experimental schemes, the superposed schemes presented better cooling effects. For the ground greening scheme, with similar net radiation flux and latent heat flux, its storage heat was lower than that of the roof greening scheme, resulting in more energy flux into the atmosphere, and its daytime cooling effect was not as good as that of the roof greening scheme. In terms of human thermal comfort(HTC), the improvement achieved by the ground greening scheme was better than any other single roof/ground schemes, because the increase in the relative humidity was small. The comprehensive evaluation of the mitigation effects of different schemes on the thermal environment presented in this paper provides a theoretical basis for improving the urban environment through rational urban planning and construction. 展开更多
关键词 urban heat island human thermal comfort urban canopy mitigation strategies Yangtze River Delta Weather Research and forecasting Model(WRF) Urban Canopy Model(UCM)
原文传递
Validation of WRF model on simulating forcing data for Heihe River Basin 被引量:10
7
作者 XiaoDuo Pan Xin Li 《Research in Cold and Arid Regions》 2011年第4期344-357,共14页
The research of coupling WRF (Weather Research and Forecasting Model) with a land surface model is enhanced to explore the interaction of the atmosphere and land surface; however, regional applicability of WRF model... The research of coupling WRF (Weather Research and Forecasting Model) with a land surface model is enhanced to explore the interaction of the atmosphere and land surface; however, regional applicability of WRF model is questioned. In order to do the validation of WRF model on simulating forcing data for the Heihe River Basin, daily meteorological observation data from 15 stations of CMA (China Meteorological Administration) and hourly meteorological observation data from seven sites of WATER (Watershed Airborne Telemetry Experimental Research) are used to compare with WRF simulations, with a time range of a whole year for 2008. Results show that the average MBE (Mean Bias Error) of daily 2-m surface temperature, surface pressure, 2-m relative humidity and 10-m wind speed were -0.19 ℃, -4.49 hPa, 4.08% and 0.92 m/s, the average RMSE (Root Mean Square Error) of them were 2.11 ℃, 5.37 hPa, 9.55% and 1.73 m/s, and the average R (correlation coefficient) of them were 0.99, 0.98, 0.80 and 0.55, respectively. The average MBE of hourly 2-m surface temperature, surface pressure, 2-m relative humidity, 10-m wind speed, downward shortwave radiation and downward longwave were-0.16 ℃,-6.62 hPa,-5.14%, 0.26 m/s, 33.0 W/m^2 and-6.44 W/m^2, the average RMSE of them were 2.62 ℃, 17.10 hPa, 20.71%, 2.46 m/s, 152.9 W/m^2 and 53.5 W/m^2, and the average R of them were 0.96, 0.97, 0.70, 0.26, 0.91 and 0.60, respectively. Thus, the following conclusions were obtained: (1) regardless of daily or hourly validation, WRF model simulations of 2-m surface temperature, surface pressure and relative humidity are more reliable, especially for 2-m surface air temperature and surface pressure, the values of MBE were small and R were more than 0.96; (2) the WRF simulating downward shortwave radiation was relatively good, the average R between WRF simulation and hourly observation data was above 0.9, and the average R of downward longwave radiation was 0.6; (3) both wind speed and rainfall simulated from WRF model did not agree well with observation data. 展开更多
关键词 forcing data weather research and forecasting model watershed airborne telemetry experimental research Heihe River Basin
下载PDF
Increases in Anthropogenic Heat Release from Energy Consumption Lead to More Frequent Extreme Heat Events in Urban Cities 被引量:2
8
作者 Bin LIU Zhenghui XIE +8 位作者 Peihua QIN Shuang LIU Ruichao LI Longhuan WANG Yan WANG Binghao JIA Si CHEN Jinbo XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期430-445,共16页
With economic development and rapid urbanization,increases in Gross Domestic Product and population in fastgrowing cities since the turn of the 21st Century have led to increases in energy consumption.Anthropogenic he... With economic development and rapid urbanization,increases in Gross Domestic Product and population in fastgrowing cities since the turn of the 21st Century have led to increases in energy consumption.Anthropogenic heat flux released to the near-surface atmosphere has led to changes in urban thermal environments and severe extreme temperature events.To investigate the effects of energy consumption on urban extreme temperature events,including extreme heat and cold events,a dynamic representation scheme of anthropogenic heat release(AHR)was implemented in the Advanced Research version of the Weather Research and Forecasting(WRF)model,and AHR data were developed based on energy consumption and population density in a case study of Beijing,China.Two simulations during 1999−2017 were then conducted using the developed WRF model with 3-km resolution with and without the AHR scheme.It was shown that the mean temperature increased with the increase in AHR,and more frequent extreme heat events were produced,with an annual increase of 0.02−0.19 days,as well as less frequent extreme cold events,with an annual decrease of 0.26−0.56 days,based on seven extreme temperature indices in the city center.AHR increased the sensible heat flux and led to surface energy budget changes,strengthening the dynamic processes in the atmospheric boundary layer that reduce AHR heating efficiency more in summer than in winter.In addition,it was concluded that suitable energy management might help to mitigate the impact of extreme temperature events in different seasons. 展开更多
关键词 anthropogenic heat release extreme temperature event Weather Research and forecasting model Beijing
下载PDF
A numerical simulation of latent heating within Typhoon Molave 被引量:1
9
作者 LIU Yang LIN Wenshi +3 位作者 LI Jiangnan WANG Gang YANG Song FENG Yerong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期39-47,共9页
The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heatin... The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly. 展开更多
关键词 latent heat weather research and forecasting model Typhoon Molave thermodynamic structure cloud microphysics zero degree isotherm
下载PDF
Effects of Land Use Changes Across Different Urbanization Periods on Summer Rainfall in the Pearl River Delta Core Area
10
作者 Zhijun Yao Guoru Huang 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第3期458-474,共17页
The Pearl River Delta(PRD)is one of the three urban agglomerations in China that have experienced rapid development.For this study,a core area of the PRD was identified,comprising the highly urbanized areas of Guangzh... The Pearl River Delta(PRD)is one of the three urban agglomerations in China that have experienced rapid development.For this study,a core area of the PRD was identified,comprising the highly urbanized areas of Guangzhou,Foshan,Zhongshan,Zhuhai,Shenzhen,and Dongguan Cities.The expansion of these urban areas was tracked across three time periods—the year population urbanization rate exceeded 70%(2000),18 years before(1982),and 18 years after(2018).This study used the Weather Research and Forecasting(WRF)model to explore summer rainfall changes across different urbanization periods in the PRD core area.The results show that urban land expansion mainly occurred in the post urbanization period.Rainfall changes acros s different urbanization periods were roughly consistent with previously observed spatial and temporal changes accompanying urban expansion in the PRD core area.Extreme rainfall mainly increased in the post urbanization period,shifting rainstorm center towards the PRD core area.Further causal analysis revealed that land use changes affected rainfall by altering thermodynamics and water vapor transfer.The urban expansion changed the surface energy balance,resulting in increased surface heating and heat island effects.The heat island effects thickened the planetary boundary layer and increased vertical wind speeds,which initiated dry island effects,thereby causing more water vapor transportation to the atmosphere.Consequently,rainstorms and extreme rainfall events have become concentrated in urban areas. 展开更多
关键词 Extreme rainfall Pearl River Delta core area South China Urban expansion process Urbanization periods Weather Research and forecasting(WRF)model
原文传递
The Effect of Moisture in Different Altitude Layers on the Eastward Propagation of MJO
11
作者 Xiaoyu ZHU Zhong ZHONG +3 位作者 Yimin ZHU Yunying LI Yijia HU Yao HA 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期437-452,共16页
In this study,driven by ERA5 reanalysis data,the Weather Research and Forecasting(WRF)version 4.0 was used to investigate the eastward propagation of the Madden-Julian oscillation(MJO)in the tropical atmosphere during... In this study,driven by ERA5 reanalysis data,the Weather Research and Forecasting(WRF)version 4.0 was used to investigate the eastward propagation of the Madden-Julian oscillation(MJO)in the tropical atmosphere during December-February(DJF)of 2007/2008.The experiment with 11 cumulus parameterization schemes respectively shows that the Grell 3D scheme is one of several worse ones in describing MJO activities.In addition,still by use of the Grell 3D scheme,four nudging assimilation experiments for water vapor in all model vertical layers(Ndg_all),lower layers(Ndg_low),middle layers(Ndg_mid),and upper layers(Ndg_upp)were conducted.It is found that when the water vapor in the model approaches to the observed value,the model performance for MJO activities is improved greatly.Among the four nudging simulations,Ndg_all certainly performs best.Although Ndg_mid is important for the MJO-filtered profiles related to moisture,Ndg_low and Ndg_upp exhibit superiority to Ndg_mid in simulating MJO eastward propagation.Ndg_low has advantages when MJO features are represented by zonal wind at 850 hPa and precipitation because the lower-level MJO-filtered moisture is conducive to the existence of lower-level condensational heating to the east of the MJO convective center.Ndg_upp performs better when describing the MJO eastward propagation features by outgoing longwave radiation(OLR)since it can capture the moisture and cloud top temperature of deep convection associated with MJO,as well as front Walker cell.These results suggest that the lower-level moisture is more important in regulating the MJO eastward propagation,and the observed maximum MJO-filtered moisture in the middle troposphere might be a phenomenon accompanying the MJO deep convection,but not a factor controlling its eastward propagation. 展开更多
关键词 Madden-Julian oscillation(MJO) nudging technique Weather Research and forecasting(WRF)model vertical moisture structure
原文传递
Performance of WRF Large Eddy Simulations in Modeling the Convective Boundary Layer over the Taklimakan Desert, China 被引量:4
12
作者 Hongxiong XU Minzhong WANG +1 位作者 Yinjun WANG Wenyue CAI 《Journal of Meteorological Research》 SCIE CSCD 2018年第6期1011-1025,共15页
The maximum height of the convective boundary layer(CBL)over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather.We combined the Weather Research and ... The maximum height of the convective boundary layer(CBL)over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather.We combined the Weather Research and Forecasting Large Eddy Simulation(WRF-LES)with data from Global Positioning System(GPS)radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert.The model reproduced the evolution of the CBL processes reasonably well,but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection.Further simulations were performed with multiple configurations and sensitivity tests.The sensitivity tests for the lateral boundary conditions(LBCs)showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs.A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs.Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer.A reduction in the sensible heat flux can correct overestimates of the potential temperature profile.However,increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude(<3 km)in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages. 展开更多
关键词 Weather Research and forecasting Model(WRF) Large Eddy Simulation(LES) convective boundary layer(CBL) the Taklimakan Desert
原文传递
Evaluation of the Forecast Accuracy of Near-Surface Temperature and Wind in Northwest China Based on the WRF Model 被引量:3
13
作者 Haixia DUAN Yaohui LI +3 位作者 Tiejun ZHANG Zhaoxia PU Cailing ZHAO Yuanpu LIU 《Journal of Meteorological Research》 SCIE CSCD 2018年第3期469-490,共22页
This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in J... This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing-thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China. 展开更多
关键词 Weather Research and forecasting(WRF) model complex terrain near-surface forecasts diurnal variation
原文传递
Statistics of the Z–R Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event 被引量:3
14
作者 Xue FANG Aimei SHAO +1 位作者 Xinjian YUE Weicheng LIU 《Journal of Meteorological Research》 SCIE CSCD 2018年第4期598-611,共14页
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather ... The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze-Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z-R relationship is combined with an empirical qr-R relationship to obtain a new Z-qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to im-prove the analysis and prediction of severe convective weather over the Yangtze--Huaihe River basin. The perform- ance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z-R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected refleetivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better per-forrnance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original re-flectivity operator. This suggests that the new statistical Z-R relationship is more suitable for predicting severe con- vective weather over the Yangtze-Huaihe River basin than the Z-R relationships currently in use. 展开更多
关键词 Z-R relationship Weather Research and forecasting (WRF) model three-dimensional variational(3DVar) system data assimilation observation operator
原文传递
Effect of Using Land Use Data with Building Characteristics on Urban Weather Simulations:A High Temperature Event in Shanghai 被引量:1
15
作者 Dahu YANG Yongwei WANG Caijun YUE 《Journal of Meteorological Research》 SCIE CSCD 2022年第6期900-913,共14页
Land use data with building characteristics are important for modeling the impacts of urban morphology on local climate.In this study,an extreme heat event in Shanghai,China,was simulated by using a WRF/BEP+BEM(Weathe... Land use data with building characteristics are important for modeling the impacts of urban morphology on local climate.In this study,an extreme heat event in Shanghai,China,was simulated by using a WRF/BEP+BEM(Weather Research and Forecasting/Building Effect Parameterization+Building Energy Model)model.We incorporated local climate zone(LCZ)land use data that resolved urban morphology using 10 classes of building parameters.The simulation was compared to a control case based on MODIS(Moderate-resolution Imaging Spectroradiometer)land use data.The findings are as follows:(1)the LCZ data performed better than the MODIS data for simulating 10-m wind speed.An increase in building height led to the wind speed to decrease by 0.6-1.4 m s^(-1)in the daytime and by 0.2-0.7 m s^(-1)at nighttime.(2)High-rise buildings warmed the air by trapping radiation in the urban canyon.This warming effect was partially offset by the cooling effect of building shadows in the day.As a result,the 2-m temperature increased by 0.8℃ at night but only by 0.4℃ during the day.(3)Heterogeneous urban surfaces increased the 50-m turbulent kinetic energy by 0.4 m^(2) s^(-2),decreased the 10-m wind speed by 1.8 m s^(-1)in the daytime,increased the surface net radiation by 45.1 W m^(2)-,and increased the 2-m temperature by 1.5℃ at nighttime.(4)The LCZ data modified the atmospheric circulation between land and ocean.The shadowing effect reduced the air temperature differences between land and ocean and weakened the sea breeze.Moreover,high-rise buildings obstructed sea breezes,restricting their impact to a smaller portion(10 km along the wind direction)of inland areas compared to that with MODIS. 展开更多
关键词 local climate zone Weather Research and forecasting model characteristics of building parameters high temperature
原文传递
Sensitivity of Typhoon Lingling(2019)simulations to horizontal mixing length and planetary boundary layer parameterizations
16
作者 Siqi CHEN Feng XU +3 位作者 Yu ZHANG Guiling YE Jianjun XU Chunlei LIU 《Frontiers of Earth Science》 SCIE CSCD 2022年第2期304-322,共19页
Forecasting the intensity of typhoons is a difficult problem in numerical weather prediction.It is subject to many factors,among which the selection of physical parameterization schemes for the model is a hot topic of... Forecasting the intensity of typhoons is a difficult problem in numerical weather prediction.It is subject to many factors,among which the selection of physical parameterization schemes for the model is a hot topic of research.In this study,the effects of horizontal mixing length(represented by h_diff)and planetary boundary layer(PBL)schemes were investigated.Six idealized and four operational sensitivity experiments were designed based on simulation of the typhoon Lingling,which occurred over the western Pacific in 2019,using the Hurricane Weather Research and Forecasting model.The results of the idealized experiments showed that,as h_diff was increased,the slope of the typhoon eye area also increased,and its intensity became stronger.On the other hand,the results of the sensitivity experiments indicated that the intensity of the simulated typhoon was sensitive to the choice of PBL scheme,with the forecast bias of the QNSE(Quasi-Normal Scale Elimination)scheme being smaller than that of the GFDL(Geophysical Fluid Dynamics Laboratory)scheme.Angular momentum budget analyses indicated that,when increasing the h_diff,the convergence of angular momentum was larger in the boundary layer,which led to a faster spin-up of the vortex,further increasing the intensity of the typhoon.From the calculated horizontal and vertical vortex spread it was found that,when the h_diff was increased,the corresponding horizontal and vertical diffusion eddies also showed an increasing trend,which was also the reason for the strengthening of the typhoon.Meanwhile,the forecast bias decreased significantly with increasing horizontal mixing length when using the same PBL scheme. 展开更多
关键词 Hurricane Weather Research and forecasting model planetary boundary layer western Pacific TYPHOON horizontal diffusion
原文传递
Modeling Study of Foehn Wind Events in Antarctic Peninsula with WRF Forced by CCSM
17
作者 Chongran ZHANG Jing ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2018年第6期909-922,共14页
Significant changes have occurred in the Antarctic Peninsula(AP) including warmer temperatures, accelerated melting of glaciers, and breakup of ice shelves. This study uses the Weather Research and Forecasting model(W... Significant changes have occurred in the Antarctic Peninsula(AP) including warmer temperatures, accelerated melting of glaciers, and breakup of ice shelves. This study uses the Weather Research and Forecasting model(WRF)forced by the Community Climate System Model 4(CCSM) simulations to study foehn wind warming in AP. Weather systems responsible for generating the foehn events are two cyclonic systems that move toward and/or cross over AP. WRF simulates the movement of cyclonic systems and the resulting foehn wind warming that is absent in CCSM. It is found that the warming extent along a transect across the central AP toward Larsen C Ice Shelf(LCIS) varies during the simulation period and the maximum warming moves from near the base of leeward slopes to over 40 km away extending toward the attached LCIS. Our analysis suggests that the foehn wind warming is negatively correlated with the incoming air temperature and the mountain top temperature during periods without significant precipitation, in which isentropic drawdown is the dominant heating mechanism. On the other hand, when significant precipitation occurs along the windward side of AP, latent heating is the major heating mechanism evidenced by positive relations between the foehn wind warming and 1) incoming air temperature, 2) windward precipitation, and 3)latent heating. Foehn wind warming caused by isentropic drawdown also tends to be stronger than that caused by latent heating. Comparison of WRF simulations forced by original and corrected CCSM data indicates that foehn wind warming is stronger in the original CCSM forced simulation when no significant windward precipitation is present.The foehn wind warming becomes weaker in both simulations when there is significant windward precipitation. This suggests that model’s ability to resolve the foehn warming varies with the forcing data, but the precipitation impact on the leeward warming is consistent. 展开更多
关键词 foehn wind warming Antarctic Peninsula melting Weather Research and forecasting(WRF) model Community Climate System Model(CCSM) forcing
原文传递
Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China 被引量:24
18
作者 Xiaoduo PAN Xin Li +3 位作者 Xiaokang SHI Xujun HAN Lihui LUO Liangxu WANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2012年第3期314-323,共10页
The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessm... The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a nextgeneration, fully compressible, Euler non-hydrostatic mesoscale forecast model with a runtime hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/ 1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2℃; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2℃, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend. 展开更多
关键词 weather research and forecasting model dynamic downscaling surface air temperature Heihe River Basin Watershed Allied Telemetry Experimental Research Project
原文传递
Assimilation of Total Lightning Data Using the Three-Dimensional Variational Method at Convection-Allowing Resolution 被引量:8
19
作者 Rong ZHANG Yijun ZHANG +2 位作者 Liangtao XU Dong ZHENG Wen YAO 《Journal of Meteorological Research》 SCIE CSCD 2017年第4期731-746,共16页
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small... A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall,the improvement from lightning data assimilation can be maintained for about 3 h. 展开更多
关键词 lightning data assimilation three-dimensional variational (3DVAR) method Wether Research and forecasting (WRF) model
原文传递
An Objective Approach to Generating Multi-Physics Ensemble Precipitation Forecasts Based on the WRF Model 被引量:1
20
作者 Chenwei SHEN Qingyun DUAN +4 位作者 Wei GONG Yanjun GAN Zhenhua DI Chen WANG Shiguang MIAO 《Journal of Meteorological Research》 SCIE CSCD 2020年第3期601-620,共20页
Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identi... Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identifying a set of scheme combinations to form a multi-physics ensemble suitable for short-range precipitation forecasting in the Greater Beijing area.The ensemble is created by using statistical techniques and some heuristics.An initial sample of 90 scheme combinations was first generated by using Latin hypercube sampling(LHS).Then,after several rounds of screening,a final ensemble of 40 combinations were chosen.The ensemble forecasts generated for both the training and verification cases using these combinations were evaluated based on several verification metrics,including threat score(TS),Brier score(BS),relative operating characteristics(ROC),and ranked probability score(RPS).The results show that TS of the final ensemble improved by 9%-33%over that of the initial ensemble.The reliability was improved for rain≤10 mm day^-1,but decreased slightly for rain>10 mm day^-1 due to insufficient samples.The resolution remained about the same.The final ensemble forecasts were better than that generated from randomly sampled scheme combinations.These results suggest that the proposed approach is an effective way to select a multi-physics ensemble for generating accurate and reliable forecasts. 展开更多
关键词 ensemble precipitation forecast Weather Research and forecasting(WRF)model MULTI-PHYSICS verification BOOTSTRAPPING
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部