In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(M...In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(MLM),yet early prediction remains challenging due to variations in tumor heterogeneity and the limitations of traditional diagnostic methods.Therefore,there is an urgent need for noninvasive techniques to improve patient outcomes.Long et al’s study introduces an innovative magnetic resonance imaging(MRI)-based radiomics model that integrates high-throughput imaging data with clinical variables to predict MLM.The study employed a 7:3 split to generate training and validation datasets.The MLM prediction model was constructed using the training set and subsequently validated on the validation set using area under the curve(AUC)and dollar-cost averaging metrics to assess performance,robustness,and generalizability.By employing advanced algorithms,the model provides a non-invasive solution to assess tumor heterogeneity for better metastasis prediction,enabling early intervention and personalized treatment planning.However,variations in MRI parameters,such as differences in scanning resolutions and protocols across facilities,patient heterogeneity(e.g.,age,comorbidities),and external factors like carcinoembryonic antigen levels introduce biases.Additionally,confounding factors such as diagnostic staging methods and patient comorbidities require further validation and adjustment to ensure accuracy and generalizability.With evolving Food and Drug Administration regulations on machine learning models in healthcare,compliance and careful consideration of these regulatory requirements are essential to ensuring safe and effective implementation of this approach in clinical practice.In the future,clinicians may be able to utilize datadriven,patient-centric artificial intelligence(AI)-enhanced imaging tools integrated with clinical data,which would help improve early detection of MLM and optimize personalized treatment strategies.Combining radiomics,genomics,histological data,and demographic information can significantly enhance the accuracy and precision of predictive models.展开更多
Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a v...Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ...Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).展开更多
A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample wa...A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi...Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.展开更多
Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strengt...Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strength index and deformation index of the alfalfa root-loess complex under dry-wet cycles.Additionally,the time effect of the shear strength index of the alfalfa root-loess complex under dry-wet cycles was analyzed and its prediction model was proposed.The results show that the PG-DWC(dry-wet cycle caused by plant water management during plant growth period)causes the peak strength of plain soil to change in a"V"shape with the increase of growth period,and the peak strength of alfalfa root-loess complex is higher than that of plain soil at the same growth period.The deterioration of the peak strength of alfalfa root-loess complex in the same growth period is aggravated with the increase of drying and wetting cycles.Compared with the 0 days growth period,the effective cohesion of alfalfa root-loess complex under different dry-wet cycles maximum increase rate is at the 180 days,which are 33.88%,46.05%,30.12%and 216.02%,respectively.When the number of dry-wet cycles is constant,the effective cohesion of the alfalfa root-loess complex overall increases with the growth period.However,it gradually decreases comparedwith the previous growth period,and the minimum increase rate are all at the 180 days.For the same growth period,the effective cohesion of the alfalfa root-loess complex decreases with the increase of the number of dry-wet cycles.This indicates that EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain)have a detrimental effect on the time effect of the shear strength of the alfalfa root-loess complex.Finally,based on the formula of total deterioration,a prediction model for the shear strength of the alfalfa root-loess complex under dry-wet cycles was proposed,which exhibits high prediction accuracy.The research results provide useful guidance for the understanding of mechanical behavior and structural damage evolution of root-soil composite.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b...With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.展开更多
Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical res...Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical research.Although over sixty models following pancreaticoduodenectomy,predominantly reliant on a variety of clinical,surgical,and radiological parameters,have been documented,their predictive accuracy remains suboptimal in external validation and across diverse populations.As models after distal pancreatectomy continue to be pro-gressively reported,their external validation is eagerly anticipated.Conversely,POPF prediction after central pancreatectomy is in its nascent stage,warranting urgent need for further development and validation.The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance.Moreover,there is potential for the development of personalized prediction models based on patient-or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF.In the future,prospective multicenter studies and the integration of novel imaging technologies,such as artificial intelligence-based radiomics,may further refine predictive models.Addressing these issues is anticipated to revolutionize risk stratification,clinical decision-making,and postoperative management in patients undergoing pancre-atectomy.展开更多
Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo...Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.展开更多
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi...BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.展开更多
Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall su...Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.展开更多
BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of ...BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.展开更多
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev...BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.展开更多
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom...Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.展开更多
文摘In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(MLM),yet early prediction remains challenging due to variations in tumor heterogeneity and the limitations of traditional diagnostic methods.Therefore,there is an urgent need for noninvasive techniques to improve patient outcomes.Long et al’s study introduces an innovative magnetic resonance imaging(MRI)-based radiomics model that integrates high-throughput imaging data with clinical variables to predict MLM.The study employed a 7:3 split to generate training and validation datasets.The MLM prediction model was constructed using the training set and subsequently validated on the validation set using area under the curve(AUC)and dollar-cost averaging metrics to assess performance,robustness,and generalizability.By employing advanced algorithms,the model provides a non-invasive solution to assess tumor heterogeneity for better metastasis prediction,enabling early intervention and personalized treatment planning.However,variations in MRI parameters,such as differences in scanning resolutions and protocols across facilities,patient heterogeneity(e.g.,age,comorbidities),and external factors like carcinoembryonic antigen levels introduce biases.Additionally,confounding factors such as diagnostic staging methods and patient comorbidities require further validation and adjustment to ensure accuracy and generalizability.With evolving Food and Drug Administration regulations on machine learning models in healthcare,compliance and careful consideration of these regulatory requirements are essential to ensuring safe and effective implementation of this approach in clinical practice.In the future,clinicians may be able to utilize datadriven,patient-centric artificial intelligence(AI)-enhanced imaging tools integrated with clinical data,which would help improve early detection of MLM and optimize personalized treatment strategies.Combining radiomics,genomics,histological data,and demographic information can significantly enhance the accuracy and precision of predictive models.
文摘Multiple Sclerosis(MS) is a major cause of neurological disability in adults and has an annual cost of approximately $28 billion in the United States. MS is a very complex disorder as demyelination can happen in a variety of locations throughout the brain; therefore, this disease is never the same in two patients making it very hard to predict disease progression. A modeling approach which combines clinical, biological and imaging measures to help treat and fight this disorder is needed. In this paper, I will outline MS as a very heterogeneous disorder, review some potential solutions from the literature, demonstrate the need for a biomarker and will discuss how computational modeling combined with biological, clinical and imaging data can help link disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
基金supported by the National Natural Science Foundation of China(81825009,82071505,81901358)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2MC&T-B-099,2019-I2M-5–006)+2 种基金the Program of Chinese Institute for Brain Research Beijing(2020-NKX-XM-12)the King’s College London-Peking University Health Science Center Joint Institute for Medical Research(BMU2020KCL001,BMU2019LCKXJ012)the National Key R&D Program of China(2021YFF1201103,2016YFC1307000).
文摘Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).
文摘A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS2022-00167197Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)+2 种基金in part by the National Research Foundation of Korea(NRF),Ministry of Education,through Basic Science Research Program under Grant NRF-2020R1I1A3066543in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.
基金received the Key Research and Development Project of Ningxia Hui Autonomous Region(2022BEG03052,2023BEG02072).
文摘Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strength index and deformation index of the alfalfa root-loess complex under dry-wet cycles.Additionally,the time effect of the shear strength index of the alfalfa root-loess complex under dry-wet cycles was analyzed and its prediction model was proposed.The results show that the PG-DWC(dry-wet cycle caused by plant water management during plant growth period)causes the peak strength of plain soil to change in a"V"shape with the increase of growth period,and the peak strength of alfalfa root-loess complex is higher than that of plain soil at the same growth period.The deterioration of the peak strength of alfalfa root-loess complex in the same growth period is aggravated with the increase of drying and wetting cycles.Compared with the 0 days growth period,the effective cohesion of alfalfa root-loess complex under different dry-wet cycles maximum increase rate is at the 180 days,which are 33.88%,46.05%,30.12%and 216.02%,respectively.When the number of dry-wet cycles is constant,the effective cohesion of the alfalfa root-loess complex overall increases with the growth period.However,it gradually decreases comparedwith the previous growth period,and the minimum increase rate are all at the 180 days.For the same growth period,the effective cohesion of the alfalfa root-loess complex decreases with the increase of the number of dry-wet cycles.This indicates that EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain)have a detrimental effect on the time effect of the shear strength of the alfalfa root-loess complex.Finally,based on the formula of total deterioration,a prediction model for the shear strength of the alfalfa root-loess complex under dry-wet cycles was proposed,which exhibits high prediction accuracy.The research results provide useful guidance for the understanding of mechanical behavior and structural damage evolution of root-soil composite.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金This work was supported by the Beijing Nova Program[Z211100002121136]Open Fund Project of State Key Laboratory of Lithospheric Evolution[SKL-K202103]+1 种基金Joint Funds of National Natural Science Foundation of China[U19B6003-02]the National Natural Science Foundation of China[42302149].We would like to thank Prof.Zhu Rixiang from the Institute of Geology and Geophysics,Chinese Academy of Sciences.
文摘With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.
文摘Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical research.Although over sixty models following pancreaticoduodenectomy,predominantly reliant on a variety of clinical,surgical,and radiological parameters,have been documented,their predictive accuracy remains suboptimal in external validation and across diverse populations.As models after distal pancreatectomy continue to be pro-gressively reported,their external validation is eagerly anticipated.Conversely,POPF prediction after central pancreatectomy is in its nascent stage,warranting urgent need for further development and validation.The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance.Moreover,there is potential for the development of personalized prediction models based on patient-or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF.In the future,prospective multicenter studies and the integration of novel imaging technologies,such as artificial intelligence-based radiomics,may further refine predictive models.Addressing these issues is anticipated to revolutionize risk stratification,clinical decision-making,and postoperative management in patients undergoing pancre-atectomy.
基金supported by the National Key R&D Program of China (No. 2019YFB1900901)the Fundamental Research Funds for the Central Universities (No. 2021MS032)
文摘Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.
基金Supported by the Chinese Nursing Association,No.ZHKY202111Scientific Research Program of School of Nursing,Chongqing Medical University,No.20230307Chongqing Science and Health Joint Medical Research Program,No.2024MSXM063.
文摘BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.
基金This workwas supported by the Medical and Health Science and Technology Project of Zhejiang Province(No.2021KY180).
文摘Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.
基金Cuiying Scientific and Technological Innovation Program of the Second Hospital,No.CY2021-BJ-A16 and No.CY2022-QN-A18Clinical Medical School of Lanzhou University and Lanzhou Science and Technology Development Guidance Plan Project,No.2023-ZD-85.
文摘BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
基金Supported by National Natural Science Foundation of China,No.81802777.
文摘BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.
文摘Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.