Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const...Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.展开更多
A mode of ontology-based information integration and management( OIIM) for testability scheme was proposed through expatiating on the connotation of the system testability scheme.Aiming at the complexity of influencin...A mode of ontology-based information integration and management( OIIM) for testability scheme was proposed through expatiating on the connotation of the system testability scheme.Aiming at the complexity of influencing factors in optimal design procedure of the testability scheme, the information of concept entities,concept attributions and concept relationships was analyzed and extracted,and then the testability scheme information ontology( TSIO) was built and coded via web ontology language( OWL).Based on the information ontology, the generalized model for testability scheme( GMTS) was founded by defining transformation rules. The primary study shows that the mode of OIIM for testability scheme can make up the deficiencies in knowledge representation and reasoning existing in traditional information models,and achieve the information share and reuse. It provides the effectual model basis for the optimal design of the testability scheme.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational i...The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational instability may occur for high vertical resolution versions if the stratification parameter C0 taken as a constant. In this paper, the possible cause leading to the instability is discussed and an improved scheme presented where C0 is generalized to be a function of both height and latitudes. Hence the reference atmosphere gets closer to the real atmosphere and the temperature deviation field to be expanded becomes smoother everywhere. Test by real case forecasts shows good computational stability of the new scheme and better prediction performance than-usual schemes of spectral model.展开更多
In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated an...In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.展开更多
There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic...There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.展开更多
In the present scenario,modular multilevel converters(MMCs)are considered to be one of the most promising and effective topologies in the family of high-power converters because of their modular design and good scalab...In the present scenario,modular multilevel converters(MMCs)are considered to be one of the most promising and effective topologies in the family of high-power converters because of their modular design and good scalability;MMCs are extensively used in high-voltage and high-power applications.Based on their unique advantages,MMCs have attracted increasing attention from academic circles over the past years.Several studies have focused on different aspects of MMCs,including submodule topologies,modeling schemes,modulation strategies,control schemes for voltage balancing and circulating currents,fault diagnoses,and fault-tolerant control strategies.To summarize the current research status of MMCs,all the aforementioned research issues with representative research approaches,results and characteristics are systematically overviewed.In the final section,the current research status of MMCs and their future trends are emphasized.展开更多
Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To...Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.展开更多
Two types of potentials are given in the present paper. The two potentials have Gaussian radial dependences. Such shapes of radial functions are suitable for using in the unitary scheme model. The first potential is g...Two types of potentials are given in the present paper. The two potentials have Gaussian radial dependences. Such shapes of radial functions are suitable for using in the unitary scheme model. The first potential is given in the form of an attractive force and the second is given in the form of a superposition of repulsive and attractive forces. The two potentials are used to calculate the binding energy of the carbon nucleus <sup>12</sup>C. For this purpose, we expand the ground-state wave function of carbon in a series of the bases of the unitary scheme model and apply the variational method. To calculate the necessary matrix elements required to obtain the binding energy of carbon, we factorized the unitary scheme model bases in the form of products of two wave functions: the first function represents the set of the A-4 nucleons and the second function represents the set of the last four nucleons by using the well-known four-body fractional parentage coefficients. Good results are obtained for the binding energy of <sup>12</sup>C by using the two potentials.展开更多
This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC gr...This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.展开更多
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian...This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.展开更多
Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonal average cloud on medium and long range integrations with the Australian Bureau of Meteorology Research Centre(BMRC...Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonal average cloud on medium and long range integrations with the Australian Bureau of Meteorology Research Centre(BMRC)global atmosphere model.The cloud scheme was shown to improve the temperature bias in the lower troposphere but there was deterioration in the upper troposphere,especially in the tropics,asso- ciated with underestimation of high cloud amount. Thirty day mean fields in a January integration showed greater amplitude in the Northern Hemisphere planetary waves and a deeper Antarctic circumpolar trough than the control experiment or a simulation with no cloud.The results for the diagnosed cloud case agree more closely with corresponding observed fields. There was also some reduction in the zonal average zonal wind component reflecting the additional zonal asymmetry introduced by the diagnostic cloud scheme.Similar trends were also noted in medium and long range forecasts for January and July conditions,although the impact on predictive skill was slight and in some cases detrimental. Areas for improving the diagnostic cloud scheme are noted.展开更多
Natural rivers are usually winding with branches and shoals, which are difficult to be simulated with rectangular grids. A 3-D current numerical model was established based on the orthogonal curvilinear coordinate sys...Natural rivers are usually winding with branches and shoals, which are difficult to be simulated with rectangular grids. A 3-D current numerical model was established based on the orthogonal curvilinear coordinate system and vertical o coordinate system. The equations were discretisized using a semi-implicit scheme. The "predictor" and "corrector" steps were applied for the horizontal momentum equations to meet the basic requirement that the depth-integrated currents obtained from the equations for 2-D and 3-D modes have identical values. And a modification of traditional method of dry/wet discriminance was proposed to determine accurately the boundary and ensure the continuity of variable boundary in the simulation. This model was verified with the data measured in a winding tidal river with branches in April, 2004. The simulated data of water levels and velocities agree well with the measured ones, and the computed results reveal well the practical flow characteristics, including the vertical secondary flow in a winding reach.展开更多
The Asselin-Robert time filter used in the leapfrog scheme can degrade the accuracy of calculations.The second-order Adams-Bashforth method with the same accuracy as the leapfrog scheme is not subject to time splittin...The Asselin-Robert time filter used in the leapfrog scheme can degrade the accuracy of calculations.The second-order Adams-Bashforth method with the same accuracy as the leapfrog scheme is not subject to time splitting instability.A new semi-implicit atmospheric general circulation spectral model is developed on the basis of NCAR(National Center for Atmospheric Research)CAM3.0(Community Atmosphere Model 3.0).In this new model,the second-order Adams-Bashforth method is used as an alternative to the leapfrog scheme,and a Crank-Nicholson scheme is incorporated for the treatment of fast gravity modes.In this paper,the new model is tested by the Held-Suarez test and an idealized baroclinic wave test.Results of the Held-Suarez test show that the second-order Adams-Bashforth model has similar climate states to those of many other global models and it converges with resolutions.Based on the idealized baroclinic wave test,the capability of different time differencing methods for keeping the initial steady-state are compared. This convinces a better ability of the second-order Adams-Bashforth method in maintaining the stability of the initial state.Furthermore,after the baroclinic wave is triggered through overlaying the steady-state initial conditions with the zonal perturbation,the second-order Adams-Bashforth method has an excellent property of convergence,and can represent the process of the baroclinic wave development much better than the original scheme in CAM3.0.A long-term integration of the new model during the period of 1980–1999 is also carried out and compared with that of CAM3.0.It is found that due to the reduction of simulation errors of prognostic variables,the second-order Adams-Bashforth method also has a better simulation ability for the diagnostic variables,such as precipitation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.61973167)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
文摘A mode of ontology-based information integration and management( OIIM) for testability scheme was proposed through expatiating on the connotation of the system testability scheme.Aiming at the complexity of influencing factors in optimal design procedure of the testability scheme, the information of concept entities,concept attributions and concept relationships was analyzed and extracted,and then the testability scheme information ontology( TSIO) was built and coded via web ontology language( OWL).Based on the information ontology, the generalized model for testability scheme( GMTS) was founded by defining transformation rules. The primary study shows that the mode of OIIM for testability scheme can make up the deficiencies in knowledge representation and reasoning existing in traditional information models,and achieve the information share and reuse. It provides the effectual model basis for the optimal design of the testability scheme.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金This work has been carried out under the support of the Medium-range Numerical Weather Forecast research project
文摘The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational instability may occur for high vertical resolution versions if the stratification parameter C0 taken as a constant. In this paper, the possible cause leading to the instability is discussed and an improved scheme presented where C0 is generalized to be a function of both height and latitudes. Hence the reference atmosphere gets closer to the real atmosphere and the temperature deviation field to be expanded becomes smoother everywhere. Test by real case forecasts shows good computational stability of the new scheme and better prediction performance than-usual schemes of spectral model.
文摘In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.
文摘There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.
基金Supported by the Science and Technology Program of State Grid Corporation of China(5100-201999330A-0-0-00)。
文摘In the present scenario,modular multilevel converters(MMCs)are considered to be one of the most promising and effective topologies in the family of high-power converters because of their modular design and good scalability;MMCs are extensively used in high-voltage and high-power applications.Based on their unique advantages,MMCs have attracted increasing attention from academic circles over the past years.Several studies have focused on different aspects of MMCs,including submodule topologies,modeling schemes,modulation strategies,control schemes for voltage balancing and circulating currents,fault diagnoses,and fault-tolerant control strategies.To summarize the current research status of MMCs,all the aforementioned research issues with representative research approaches,results and characteristics are systematically overviewed.In the final section,the current research status of MMCs and their future trends are emphasized.
基金National Natural Science Foundation of China(41275002,41175054)Key Program of National Natural Science Foundation of China(41230421)
文摘Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.
文摘Two types of potentials are given in the present paper. The two potentials have Gaussian radial dependences. Such shapes of radial functions are suitable for using in the unitary scheme model. The first potential is given in the form of an attractive force and the second is given in the form of a superposition of repulsive and attractive forces. The two potentials are used to calculate the binding energy of the carbon nucleus <sup>12</sup>C. For this purpose, we expand the ground-state wave function of carbon in a series of the bases of the unitary scheme model and apply the variational method. To calculate the necessary matrix elements required to obtain the binding energy of carbon, we factorized the unitary scheme model bases in the form of products of two wave functions: the first function represents the set of the A-4 nucleons and the second function represents the set of the last four nucleons by using the well-known four-body fractional parentage coefficients. Good results are obtained for the binding energy of <sup>12</sup>C by using the two potentials.
基金supported by National Natural Science Foundation of China(No.61473170)Key R&D Plan Project of Shandong Province,PRC(No.2016GSF115018)
文摘This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.
基金support of the National Natural Science Foundation of China(NSFC) under grants Nos.20976091 and 20806045the Key Project of National High-tech R&D Program under grant No.2009AA044701the Program for New Century Excellent Talents in universities(NCET)
文摘This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.
文摘Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonal average cloud on medium and long range integrations with the Australian Bureau of Meteorology Research Centre(BMRC)global atmosphere model.The cloud scheme was shown to improve the temperature bias in the lower troposphere but there was deterioration in the upper troposphere,especially in the tropics,asso- ciated with underestimation of high cloud amount. Thirty day mean fields in a January integration showed greater amplitude in the Northern Hemisphere planetary waves and a deeper Antarctic circumpolar trough than the control experiment or a simulation with no cloud.The results for the diagnosed cloud case agree more closely with corresponding observed fields. There was also some reduction in the zonal average zonal wind component reflecting the additional zonal asymmetry introduced by the diagnostic cloud scheme.Similar trends were also noted in medium and long range forecasts for January and July conditions,although the impact on predictive skill was slight and in some cases detrimental. Areas for improving the diagnostic cloud scheme are noted.
文摘Natural rivers are usually winding with branches and shoals, which are difficult to be simulated with rectangular grids. A 3-D current numerical model was established based on the orthogonal curvilinear coordinate system and vertical o coordinate system. The equations were discretisized using a semi-implicit scheme. The "predictor" and "corrector" steps were applied for the horizontal momentum equations to meet the basic requirement that the depth-integrated currents obtained from the equations for 2-D and 3-D modes have identical values. And a modification of traditional method of dry/wet discriminance was proposed to determine accurately the boundary and ensure the continuity of variable boundary in the simulation. This model was verified with the data measured in a winding tidal river with branches in April, 2004. The simulated data of water levels and velocities agree well with the measured ones, and the computed results reveal well the practical flow characteristics, including the vertical secondary flow in a winding reach.
基金the China Meteorological Administration Special Fund for GRAPES System Numerical Prediction
文摘The Asselin-Robert time filter used in the leapfrog scheme can degrade the accuracy of calculations.The second-order Adams-Bashforth method with the same accuracy as the leapfrog scheme is not subject to time splitting instability.A new semi-implicit atmospheric general circulation spectral model is developed on the basis of NCAR(National Center for Atmospheric Research)CAM3.0(Community Atmosphere Model 3.0).In this new model,the second-order Adams-Bashforth method is used as an alternative to the leapfrog scheme,and a Crank-Nicholson scheme is incorporated for the treatment of fast gravity modes.In this paper,the new model is tested by the Held-Suarez test and an idealized baroclinic wave test.Results of the Held-Suarez test show that the second-order Adams-Bashforth model has similar climate states to those of many other global models and it converges with resolutions.Based on the idealized baroclinic wave test,the capability of different time differencing methods for keeping the initial steady-state are compared. This convinces a better ability of the second-order Adams-Bashforth method in maintaining the stability of the initial state.Furthermore,after the baroclinic wave is triggered through overlaying the steady-state initial conditions with the zonal perturbation,the second-order Adams-Bashforth method has an excellent property of convergence,and can represent the process of the baroclinic wave development much better than the original scheme in CAM3.0.A long-term integration of the new model during the period of 1980–1999 is also carried out and compared with that of CAM3.0.It is found that due to the reduction of simulation errors of prognostic variables,the second-order Adams-Bashforth method also has a better simulation ability for the diagnostic variables,such as precipitation.