This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CF...This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.展开更多
To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowle...To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.展开更多
This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this m...This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.展开更多
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
Objectives of this task are to conduct research on seismic hazards,and to provide relevant input on the expected levels of these hazards to other tasks.Other tasks requiring this input include those dealing with inven...Objectives of this task are to conduct research on seismic hazards,and to provide relevant input on the expected levels of these hazards to other tasks.Other tasks requiring this input include those dealing with inventory,fragility curves, rehabilitation strategies and demonstration projects.The corresponding input is provided in various formats depending on the intended use:as peak ground motion parameters and/or response spectral values for a given magnitude,epicentral distance and site conditions;or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mapped by the U.S.Geological Survey and are incorporated in building codes.The user community for this research is both academic researchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developed under this task for a variety of applications.These include ground motions for scenario earthquakes,for developing fragility curves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S.展开更多
[Objective]The model of regionalization management of specific equine disease-free zone were analysed and discussed. [Methods]International animal epidemics regionalization management experience and specific equine di...[Objective]The model of regionalization management of specific equine disease-free zone were analysed and discussed. [Methods]International animal epidemics regionalization management experience and specific equine disease-free zone establishment were analysed and discussed based on the State and OIE principles. [Results]The regionalization management of specific equine disease-free zone with county administrative regions level of international recognition was established first in China,combined with the region's geographical barrier and animal health. [Conclusion]The aim is to to provide experience and reference for other areas to establish specific disease-free zone.展开更多
New technological advancements combined with powerful computer hardware and high-speed network make big data available.The massive sample size of big data introduces unique computational challenges on scalability and ...New technological advancements combined with powerful computer hardware and high-speed network make big data available.The massive sample size of big data introduces unique computational challenges on scalability and storage of statistical methods.In this paper,we focus on the lack of fit test of parametric regression models under the framework of big data.We develop a computationally feasible testing approach via integrating the divide-and-conquer algorithm into a powerful nonparametric test statistic.Our theory results show that under mild conditions,the asymptotic null distribution of the proposed test is standard normal.Furthermore,the proposed test benefits fromthe use of data-driven bandwidth procedure and thus possesses certain adaptive property.Simulation studies show that the proposed method has satisfactory performances,and it is illustrated with an analysis of an airline data.展开更多
As part of a recent analysis of exclusive two-photon production of W+W- pairs at the LHC, the CMS experiment used di-lepton data to obtain an "effective" photon-photon luminosity. We show how the CMS analysis on th...As part of a recent analysis of exclusive two-photon production of W+W- pairs at the LHC, the CMS experiment used di-lepton data to obtain an "effective" photon-photon luminosity. We show how the CMS analysis on their 8 TeV data, along with some assumptions about the likelihood for events in which the proton breaks up to pass the selection criteria, can be used to significantly constrain the photon parton distribution functions, such as those from the CTEQ, MRST, and NNPDF collaborations. We compare the data with predictions using these photon distributions, as well as the new LUXqed photon distribution. We study the impact of including these data on the NNPDF2.3QED, NNPDF3.0QED and CT14QEDinc fits. We find that these data place a useful and complementary cross-check on the photon distribution, which is consistent with the LUXqed prediction while suggesting that the NNPDF photon error band should be significantly reduced. Additionally, we propose a simple model for describing the two-photon production of W^+W^- at the LHC. Using this model, we constrain the number of inelastic photons that remain after the experimental cuts are applied.展开更多
The effect of the annealing time and annealing temperature on Ni/Ge/Au electrode contacts deposited on the n-type InP contact layer has been studied using a circular transmission line model. The minimum specific conta...The effect of the annealing time and annealing temperature on Ni/Ge/Au electrode contacts deposited on the n-type InP contact layer has been studied using a circular transmission line model. The minimum specific contact resistance of 3.210 7 cm2was achieved on the low-doped n-type InP contact layer with a 40 s anneal at 425 ℃. In order to improve the ohmic contact and reduce the difficulty in the fabrication of the high doped InP epi-layer, the doping concentration in the InP contact layer was chosen to be 51018cm 3in the fabrication of transferred electronic devices. Excellent differential negative resistance properties were obtained by an electron beam evaporating the Ni/Ge/Au/Ge/Ni/Au composite electrode on an InP epi-layer with a 60 s anneal at 380 ℃.展开更多
文摘This paper analyzes the applications of four air terminal device(ATD)models(i.e.,the basic model,the box model,the N-point momentum model,the jet main region specification model)in computational fluid dynamics(CFD)simulation and their performance in case study.A full-scale experiment is performed in an environment chamber,and the measured air velocity and temperature fields are compared with the simulation results by using four ATD models.The velocity and temperature fields are measured by an omni-directional thermo-anemometer system.It demonstrates that the basic model and the box model are not applicable to complicated air terminal devices.At the occupant area,the relative errors between simulated and measured air velocities are less than 20% based on the N-point momentum model and the jet main region specification model.Around the ATD zone,the relative error between the numerical and measured air velocity based on the jet main region specification model is less than 15%.The jet main region specification model is proved to be an applicable approach and a more accurate way to study the airflow pattern around the ATD with complicated geometry.
基金supported by the National Natural Science Foundation of China(61273198)
文摘To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.
基金Supported by the National Natural Science F oundation of China(6 98730 35 ) and the Research Fund for the Doctoral Program of Hi
文摘This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
基金the Earthquake Engineering Research Centers Program of the National Science Foundation under Award Number EEC-9701471 to the Multidisciplinary Center for Earthquake Engineering Research.
文摘Objectives of this task are to conduct research on seismic hazards,and to provide relevant input on the expected levels of these hazards to other tasks.Other tasks requiring this input include those dealing with inventory,fragility curves, rehabilitation strategies and demonstration projects.The corresponding input is provided in various formats depending on the intended use:as peak ground motion parameters and/or response spectral values for a given magnitude,epicentral distance and site conditions;or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mapped by the U.S.Geological Survey and are incorporated in building codes.The user community for this research is both academic researchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developed under this task for a variety of applications.These include ground motions for scenario earthquakes,for developing fragility curves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S.
文摘[Objective]The model of regionalization management of specific equine disease-free zone were analysed and discussed. [Methods]International animal epidemics regionalization management experience and specific equine disease-free zone establishment were analysed and discussed based on the State and OIE principles. [Results]The regionalization management of specific equine disease-free zone with county administrative regions level of international recognition was established first in China,combined with the region's geographical barrier and animal health. [Conclusion]The aim is to to provide experience and reference for other areas to establish specific disease-free zone.
基金This paper was supported by the National Natural Science Foundation of China[grant number 11431006][grant num-ber 11690015]+1 种基金[grant number 11371202][grant number 11622104].
文摘New technological advancements combined with powerful computer hardware and high-speed network make big data available.The massive sample size of big data introduces unique computational challenges on scalability and storage of statistical methods.In this paper,we focus on the lack of fit test of parametric regression models under the framework of big data.We develop a computationally feasible testing approach via integrating the divide-and-conquer algorithm into a powerful nonparametric test statistic.Our theory results show that under mild conditions,the asymptotic null distribution of the proposed test is standard normal.Furthermore,the proposed test benefits fromthe use of data-driven bandwidth procedure and thus possesses certain adaptive property.Simulation studies show that the proposed method has satisfactory performances,and it is illustrated with an analysis of an airline data.
基金Supported by the U.S.National Science Foundation(PHY-1417326,PHY-1719914)the National Natural Science Foundation of China(11465018)
文摘As part of a recent analysis of exclusive two-photon production of W+W- pairs at the LHC, the CMS experiment used di-lepton data to obtain an "effective" photon-photon luminosity. We show how the CMS analysis on their 8 TeV data, along with some assumptions about the likelihood for events in which the proton breaks up to pass the selection criteria, can be used to significantly constrain the photon parton distribution functions, such as those from the CTEQ, MRST, and NNPDF collaborations. We compare the data with predictions using these photon distributions, as well as the new LUXqed photon distribution. We study the impact of including these data on the NNPDF2.3QED, NNPDF3.0QED and CT14QEDinc fits. We find that these data place a useful and complementary cross-check on the photon distribution, which is consistent with the LUXqed prediction while suggesting that the NNPDF photon error band should be significantly reduced. Additionally, we propose a simple model for describing the two-photon production of W^+W^- at the LHC. Using this model, we constrain the number of inelastic photons that remain after the experimental cuts are applied.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.YYYJ1123)
文摘The effect of the annealing time and annealing temperature on Ni/Ge/Au electrode contacts deposited on the n-type InP contact layer has been studied using a circular transmission line model. The minimum specific contact resistance of 3.210 7 cm2was achieved on the low-doped n-type InP contact layer with a 40 s anneal at 425 ℃. In order to improve the ohmic contact and reduce the difficulty in the fabrication of the high doped InP epi-layer, the doping concentration in the InP contact layer was chosen to be 51018cm 3in the fabrication of transferred electronic devices. Excellent differential negative resistance properties were obtained by an electron beam evaporating the Ni/Ge/Au/Ge/Ni/Au composite electrode on an InP epi-layer with a 60 s anneal at 380 ℃.