The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impac...Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.展开更多
The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected ...Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.展开更多
Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes...Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.展开更多
Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construc...Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.展开更多
随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模...随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模块开展了研究。首先,综合隔震支座应用情况和力学特性,可将其分为橡胶隔震支座、滑移摩擦隔震支座和其他类型隔震支座,据此提出了隔震支座BIM快速建模模块基本架构;随后,基于Revit和Visual Studio平台开发了三类隔震支座BIM模型的快速建模功能,并实现了连接节点参数化建模和支座批量/手动布置的操作功能;最后,开展了某化工公司的库房隔震加固项目的隔震层BIM模型建模实践,结果表明:利用快速建模模块可将隔震层BIM建模操作从7个步骤降低至2个步骤,且使用过程中对隔震支座构造细节的认知要求相对较低。同时,建成后的BIM模型与实际工程在建筑信息的多个方面具有较好的一致性。相关研究可为建筑和桥梁隔震工程的BIM建模提供参考和借鉴。展开更多
During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety....During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety.To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures,the design and assessment process must be efficient,yet provide a holistic view of soil-structure interaction effects.This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models.Furthermore,visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling(BIM)framework for tunnelling.This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour.Furthermore,because this approach is implemented on a BIM platform for tunnelling,first,the design can be optimised directly in the design environment,thus eliminating errors in data exchange between designers and computational analysts.Secondly,the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field,which allows for a more intuitive understanding of design actions and for collaborative design.Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way.展开更多
The axial selection of tunnels constructed in the interlayered soft-hard rock mass affects the stability and safety during construction.Previous optimization is primarily based on experience or comparison and selectio...The axial selection of tunnels constructed in the interlayered soft-hard rock mass affects the stability and safety during construction.Previous optimization is primarily based on experience or comparison and selection of alternative values under specific geological conditions.In this work,an intelligent optimization framework has been proposed by combining numerical analysis,machine learning(ML)and optimization algorithm.An automatic and intelligent numerical analysis process was proposed and coded to reduce redundant manual intervention.The conventional optimization algorithm was developed from two aspects and applied to the hyperparameters estimation of the support vector machine(SVM)model and the axial orientation optimization of the tunnel.Finally,the comprehensive framework was applied to a numerical case study,and the results were compared with those of other studies.The results of this study indicate that the determination coefficients between the predicted and the numerical stability evaluation indices(STIs)on the training and testing datasets are 0.998 and 0.997,respectively.For a given geological condition,the STI that changes with the axial orientation shows the trend of first decreasing and then increasing,and the optimal tunnel axial orientation is estimated to be 87.This method provides an alternative and quick approach to the overall design of the tunnels.展开更多
The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can...The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can achieve more complex functions and adapt to the changing environment more easily, so as to meet a wide range of needs. In this paper, the contents and concepts of microbial community and synthetic microbial community are briefly introduced, the principles that should be followed in the construction of microbial community are expounded, the methods and mathematical models used in the construction of synthetic microbial community are introduced, and the applications of synthetic microbial community in various fields are summarized. Finally, the challenges in the research of synthetic microbial communities are briefly described.展开更多
This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a...This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.展开更多
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
The use of bio-based materials in buildings has become more and more significant last years.In most of the cases,their health properties and natural provenance have made them a great solution to face global climate wa...The use of bio-based materials in buildings has become more and more significant last years.In most of the cases,their health properties and natural provenance have made them a great solution to face global climate warming and the new policies to reduce building energy consumption.In many thermal problems,biobased materials can allow to optimize the building thermal behavior according to its energy consumption and inside comfort conditions.So it is when they are used as an insulation material in the building.However,it is not the case in this paper.In fact,the bio-based matter is rather used as a desiccant wheel to control air conditioning inside the building.The aim of this paper is to numerically verify if it is possible to use a bed of wood chips as a hygroscopic material(or a desiccant matter)in order to modify the relative humidity inside the building in Reunion Island and so improve thermal comfort.A simple model of heat and mass transfer between a bed of wood chips and building inside air has been set up and implemented into a validated building simulation code named ISOLAB.Numerical simulations were set up for the four climate zones of the island regulations and a focus has been made on the low altitude one(with high,solar irradiation,temperature and relative humidity).Simulation results give the thermal behavior of the building particularly the temperature and relative humidity of inside air temperature,and temperature and moisture content of wood chips.The obtained results lead to determine if the wood chips bed is suitable for the reference building and to verify its technical feasibility(wood species,size of the bed,integration to the building,etc.).The results show that the use of a WCB help to decrease the building inside air temperature and water content up to 10°C less and 11.6 g.kg-1 less.These are the ways to improve inside comfort conditions.Indeed,comfort analysis have shown the possibility to significantly increase building users’thermal comfort when coupled with a fan and natural ventilation,like the regulation needs for low altitude climate.In this case,a gain of 68%of year time is achieved for a building equipped with WCB system compared to one without it(6308 hours of comfort over a year with the WCB against 350 hours without WCB).So the WCB seems to be able to help reducing cooling loads in tropical climate conditions.展开更多
This study uses a building energy performance simulation to investigate the impact of predicted climate warming and the additional issue of building ageing on the energy performance for a library in Turin,Italy.The cl...This study uses a building energy performance simulation to investigate the impact of predicted climate warming and the additional issue of building ageing on the energy performance for a library in Turin,Italy.The climate and ageing factors were modelled individually and then integrated together for several decades.Results from the climate-only simulation showed a decrease in thebuilding heating energy usage which outweighed the increase in the on-site cooling energy demand occurring in a warming scenario.The study revealed a high sensitivity of energy performance to building ageing,in particular due to HVAC(Heating,Ventilation and Air Conditioning) equipment efficiency degradation.Building ageing was seen to negatively affect the energy performance as it induced a further increase of the cooling energy usage in a warming climate,while it also counteracted the reduction of the heating energy usage resulting from warming.Simulations on the combination of mitigation techniques showed a number of potentially retrofit measures that would be beneficial for buildings to avoid an increase in the cooling energy usage due to climate warming.The combination of these retrofit techniques showed a potential decrease of 87.3% in the final cooling energy usage for the considered building.展开更多
To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents....To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents.Innovational and enterprising talents are inseparable from creative thinking,while the cultivation of creative thinking is the basis of cultivation of innovational and enterprising talents.This paper discussed cultivation of students' creative thinking through making building models in basic course of architectural design.Besides,it analyzed the relation between making of building models and creative thinking from divergent thinking,multi-directional thinking,element changing thinking,conversion thinking,and reverse thinking.It is expected to cultivate students' creative thinking through building models,to lay a solid foundation for architectural design courses,and to provide more architectural designers with more solid foundation and creative thinking.展开更多
AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) c...AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.展开更多
Practice teaching is playing a more and more important role in cultivating qualified graduates for the society, Business English combines both English language and business together, and it itself is an application of...Practice teaching is playing a more and more important role in cultivating qualified graduates for the society, Business English combines both English language and business together, and it itself is an application of language. For English major students, schools should innovate their teaching models and improving teaching conditions to help students to get practical knowledge and acquire real skills to be used in real business situations.展开更多
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
基金funded in part by the Industrial Assessment Center Projectsupported by grants fromthe US Department of Energy and by the West Virginia Development Office.
文摘Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
基金Financial support for this research was provided in part by the US Army Corps of Engineers through a subaward from the University of California,San Diego,USA。
文摘Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.
文摘Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.
文摘Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.
文摘随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模块开展了研究。首先,综合隔震支座应用情况和力学特性,可将其分为橡胶隔震支座、滑移摩擦隔震支座和其他类型隔震支座,据此提出了隔震支座BIM快速建模模块基本架构;随后,基于Revit和Visual Studio平台开发了三类隔震支座BIM模型的快速建模功能,并实现了连接节点参数化建模和支座批量/手动布置的操作功能;最后,开展了某化工公司的库房隔震加固项目的隔震层BIM模型建模实践,结果表明:利用快速建模模块可将隔震层BIM建模操作从7个步骤降低至2个步骤,且使用过程中对隔震支座构造细节的认知要求相对较低。同时,建成后的BIM模型与实际工程在建筑信息的多个方面具有较好的一致性。相关研究可为建筑和桥梁隔震工程的BIM建模提供参考和借鉴。
文摘During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety.To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures,the design and assessment process must be efficient,yet provide a holistic view of soil-structure interaction effects.This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models.Furthermore,visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling(BIM)framework for tunnelling.This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour.Furthermore,because this approach is implemented on a BIM platform for tunnelling,first,the design can be optimised directly in the design environment,thus eliminating errors in data exchange between designers and computational analysts.Secondly,the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field,which allows for a more intuitive understanding of design actions and for collaborative design.Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way.
基金supported by the National Natural Science Foundation of China(Grant Nos.51991392 and 51922104).
文摘The axial selection of tunnels constructed in the interlayered soft-hard rock mass affects the stability and safety during construction.Previous optimization is primarily based on experience or comparison and selection of alternative values under specific geological conditions.In this work,an intelligent optimization framework has been proposed by combining numerical analysis,machine learning(ML)and optimization algorithm.An automatic and intelligent numerical analysis process was proposed and coded to reduce redundant manual intervention.The conventional optimization algorithm was developed from two aspects and applied to the hyperparameters estimation of the support vector machine(SVM)model and the axial orientation optimization of the tunnel.Finally,the comprehensive framework was applied to a numerical case study,and the results were compared with those of other studies.The results of this study indicate that the determination coefficients between the predicted and the numerical stability evaluation indices(STIs)on the training and testing datasets are 0.998 and 0.997,respectively.For a given geological condition,the STI that changes with the axial orientation shows the trend of first decreasing and then increasing,and the optimal tunnel axial orientation is estimated to be 87.This method provides an alternative and quick approach to the overall design of the tunnels.
文摘The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can achieve more complex functions and adapt to the changing environment more easily, so as to meet a wide range of needs. In this paper, the contents and concepts of microbial community and synthetic microbial community are briefly introduced, the principles that should be followed in the construction of microbial community are expounded, the methods and mathematical models used in the construction of synthetic microbial community are introduced, and the applications of synthetic microbial community in various fields are summarized. Finally, the challenges in the research of synthetic microbial communities are briefly described.
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
文摘The use of bio-based materials in buildings has become more and more significant last years.In most of the cases,their health properties and natural provenance have made them a great solution to face global climate warming and the new policies to reduce building energy consumption.In many thermal problems,biobased materials can allow to optimize the building thermal behavior according to its energy consumption and inside comfort conditions.So it is when they are used as an insulation material in the building.However,it is not the case in this paper.In fact,the bio-based matter is rather used as a desiccant wheel to control air conditioning inside the building.The aim of this paper is to numerically verify if it is possible to use a bed of wood chips as a hygroscopic material(or a desiccant matter)in order to modify the relative humidity inside the building in Reunion Island and so improve thermal comfort.A simple model of heat and mass transfer between a bed of wood chips and building inside air has been set up and implemented into a validated building simulation code named ISOLAB.Numerical simulations were set up for the four climate zones of the island regulations and a focus has been made on the low altitude one(with high,solar irradiation,temperature and relative humidity).Simulation results give the thermal behavior of the building particularly the temperature and relative humidity of inside air temperature,and temperature and moisture content of wood chips.The obtained results lead to determine if the wood chips bed is suitable for the reference building and to verify its technical feasibility(wood species,size of the bed,integration to the building,etc.).The results show that the use of a WCB help to decrease the building inside air temperature and water content up to 10°C less and 11.6 g.kg-1 less.These are the ways to improve inside comfort conditions.Indeed,comfort analysis have shown the possibility to significantly increase building users’thermal comfort when coupled with a fan and natural ventilation,like the regulation needs for low altitude climate.In this case,a gain of 68%of year time is achieved for a building equipped with WCB system compared to one without it(6308 hours of comfort over a year with the WCB against 350 hours without WCB).So the WCB seems to be able to help reducing cooling loads in tropical climate conditions.
文摘This study uses a building energy performance simulation to investigate the impact of predicted climate warming and the additional issue of building ageing on the energy performance for a library in Turin,Italy.The climate and ageing factors were modelled individually and then integrated together for several decades.Results from the climate-only simulation showed a decrease in thebuilding heating energy usage which outweighed the increase in the on-site cooling energy demand occurring in a warming scenario.The study revealed a high sensitivity of energy performance to building ageing,in particular due to HVAC(Heating,Ventilation and Air Conditioning) equipment efficiency degradation.Building ageing was seen to negatively affect the energy performance as it induced a further increase of the cooling energy usage in a warming climate,while it also counteracted the reduction of the heating energy usage resulting from warming.Simulations on the combination of mitigation techniques showed a number of potentially retrofit measures that would be beneficial for buildings to avoid an increase in the cooling energy usage due to climate warming.The combination of these retrofit techniques showed a potential decrease of 87.3% in the final cooling energy usage for the considered building.
基金Sponsored by the Experimental Teaching Reform and Laboratory Construction Project of University of Science and Technology Liaoning in 2015"Experimental Teaching Reform of Form Composition in Basis of Architectural Design"Project of the 13th Five-Year Plan for Education and Science of Liaoning Province in 2016(JG16DB222)
文摘To comply with the strategic goal of "mass entrepreneurship and innovation",universities and col eges adjusted the discipline cultivation objective to be cultivation of innovational and enterprising talents.Innovational and enterprising talents are inseparable from creative thinking,while the cultivation of creative thinking is the basis of cultivation of innovational and enterprising talents.This paper discussed cultivation of students' creative thinking through making building models in basic course of architectural design.Besides,it analyzed the relation between making of building models and creative thinking from divergent thinking,multi-directional thinking,element changing thinking,conversion thinking,and reverse thinking.It is expected to cultivate students' creative thinking through building models,to lay a solid foundation for architectural design courses,and to provide more architectural designers with more solid foundation and creative thinking.
文摘AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.
文摘Practice teaching is playing a more and more important role in cultivating qualified graduates for the society, Business English combines both English language and business together, and it itself is an application of language. For English major students, schools should innovate their teaching models and improving teaching conditions to help students to get practical knowledge and acquire real skills to be used in real business situations.