Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters o...Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.展开更多
In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors.It is shown that the blockwise empirical likelihood is a good way to ...In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors.It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples.展开更多
This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on th...This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].展开更多
To describe the current aging population in China and globally,especially as it applies to age-related macular degeneration(AMD).To review the current standards of care for treating both wet(exudative)eAMD and dry(atr...To describe the current aging population in China and globally,especially as it applies to age-related macular degeneration(AMD).To review the current standards of care for treating both wet(exudative)eAMD and dry(atrophic)aAMD.And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study(AREDS)using eye bank tissue.A literature search that outlines current aging populations,standards of clinical treatment as defined by large,multicenter,randomized clinical trials that present level-I data with a low risk for bias.An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes.Analysis includes proteomic,cellular,and functional genomics.The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth(anti-VEGF)agents alone or in combination with photodynamic therapy.Monotherapy treatment intervals may be monthly,as needed,or by using a treat-and-extend(TAE)protocol.There are no proven therapies for aAMD.AMD that is phenotypically defined at AREDS level 3,should be managed with the use of anti-oxidant vitamins,lutein/zeaxanthin and zinc(AREDS-2 formulation).By understanding the multiple etiologies in the pathogenesis of AMD(i.e.,oxidative stress,inflammation,and genetics),the use of human eye bank tissues graded according to the Minnesota Grading System(MGS)will enable future insights into the pathogenesis of AMD.Initial AMD management is with lifestyle modification such as avoiding smoking,eating a healthy diet and using appropriate vitamin supplements(AREDS-2).For eAMD,anti-VEGF therapies using either pro re nata(PRN)or TAE protocols are recommended,with photodynamic therapy in appropriate cases.New cellular information will direct future,potential therapies and these will originate from experimental models,such as the proposed eye bank model using the MGS,that leverages the prospective AREDS database.展开更多
考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explore...In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explored. First, a new texture segmentation method exploiting the JND profile is devised to detect and classify texture regions in video scenes. In this step, a spatial-temporal JND model is proposed and the JND energy of every micro-block unit is computed and compared with the threshold. Secondly, in order to effectively remove temporal redundancies while preserving high visual quality, an AR model is applied to synthesize the texture regions. All the parameters of the AR model are obtained by the least-squares method and each pixel in the texture region is generated as a linear combination of pixels taken from the closest forward and backward reference frames. Finally, the proposed method is compared with the H.264/AVC video coding system to demonstrate the performance. Various sequences with different types of texture regions are used in the experiment and the results show that the proposed method can reduce the bit-rate by 15% to 58% while maintaining good perceptual quality.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu...Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.展开更多
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros...The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.展开更多
To discover new lead compounds for M1 agonists. Ten typical M1 agonists were superimposed to build a M1 agonists 3D-pharmacophore model using distance-comparisons (DISCO) method without the previous knowledge of the...To discover new lead compounds for M1 agonists. Ten typical M1 agonists were superimposed to build a M1 agonists 3D-pharmacophore model using distance-comparisons (DISCO) method without the previous knowledge of the three-dimensional structure of M1 receptor. Virtual screening strategy was used to analyze the Available Chemicals Directory-Screening Compounds (ACD-SC) to identify possible new hits. Twenty-two compounds which fit the pharmacophore model well and are not similar with known M1 agonists were purchased in order to evaluate their M1 receptor agonist activity. One of them shows M1 receptor agonist activity with EC50 of 4.90 μmol/L and maximum response. Multiple of 10.0 which shows it worthy of further study as a new lead compound for M1 agonists.展开更多
In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. Th...In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. The errors between the predicted values of the two theoretical prediction models and experimental values were calculated by error analysis. The forming limit curves were verified by the punch stretch test to evaluate the prediction accuracy of M K model and Lou Huh criterion. The error analysis results show that the mean error of Lou Huh criterion with the optimal parameters for all tensile specimens is 25.04%, while the mean error of M K model for all tensile specimens is 74.24%. The prediction accuracy of Lou Huh criterion in predicting the fracture of AA7075-T6 sheet is higher. The punch stretch test results show that the forming limit curve drawn by Lou Huh criterion can effectively predict the fracture of AA7075-T6 sheet, but the prediction accuracy of M K model is relatively poor.展开更多
In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an emp...In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.展开更多
During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode ...During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.展开更多
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els fai...The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.展开更多
A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of o...A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.展开更多
The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary pr...The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary project, involving architecture, structures, water network and electrical system components. In order to cover in detail the various design features, the case study was limited to a specific area of a house, the sanitary rooms, as it presents sufficient complexity in modeling and the application of VR and AR software. The VR/AR functionalities applied over the BIM model increase the potential of BIM in the construction sector, contributing to the achievement of a high level of collaboration and control of the project based on an immersive and interactive environment. The elaboration of the different phases of a BIM design requires the transfer of models between BIM and VR/AR systems, allowing us to analyze the main advantages that BIM/VR/AR integration can introduce in the construction industry. The study contributes positively to achieving new knowledge in BIM, being disseminated in an academic research work and illustrated in a practical context.展开更多
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金The research is supported by the National Natural Science Foundation of China (60574069)the Soft Science Foundation of Guangdong Province (2005B70101044)
文摘Based on the weekly closing price of Shenzhen Integrated Index, this article studies the volatility of Shenzhen Stock Market using three different models: Logistic, AR(1) and AR(2). The time-variable parameters of Logistic regression model is estimated by using both the index smoothing method and the time-variable parameter estimation method. And both the AR(1) model and the AR(2) model of zero-mean series of the weekly dosing price and its zero-mean series of volatility rate are established based on the analysis results of zero-mean series of the weekly closing price, Six common statistical methods for error prediction are used to test the predicting results. These methods are: mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), Akaike's information criterion (AIC), and Bayesian information criterion (BIC). The investigation shows that AR(1) model exhibits the best predicting result, whereas AR(2) model exhibits predicting results that is intermediate between AR(1) model and the Logistic regression model.
文摘In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors.It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples.
基金Supported by the NSSFC(02BTJ001) Supported by the NSSFC(04BTJ002) Supported by the Grant for Post-Doctorial Fellows in Southeast University
文摘This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].
基金This work was supported in part by NIH/NIA RO1 AG025392 NIH/NEI:RO1 EY022097,JoAnne Smith and Delta Airlines Charitable Donation,and an unrestricted grant from Research to Prevent Blindness to the Mayo Clinic,Department of Ophthalmology,Rochester,MN,USA.
文摘To describe the current aging population in China and globally,especially as it applies to age-related macular degeneration(AMD).To review the current standards of care for treating both wet(exudative)eAMD and dry(atrophic)aAMD.And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study(AREDS)using eye bank tissue.A literature search that outlines current aging populations,standards of clinical treatment as defined by large,multicenter,randomized clinical trials that present level-I data with a low risk for bias.An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes.Analysis includes proteomic,cellular,and functional genomics.The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth(anti-VEGF)agents alone or in combination with photodynamic therapy.Monotherapy treatment intervals may be monthly,as needed,or by using a treat-and-extend(TAE)protocol.There are no proven therapies for aAMD.AMD that is phenotypically defined at AREDS level 3,should be managed with the use of anti-oxidant vitamins,lutein/zeaxanthin and zinc(AREDS-2 formulation).By understanding the multiple etiologies in the pathogenesis of AMD(i.e.,oxidative stress,inflammation,and genetics),the use of human eye bank tissues graded according to the Minnesota Grading System(MGS)will enable future insights into the pathogenesis of AMD.Initial AMD management is with lifestyle modification such as avoiding smoking,eating a healthy diet and using appropriate vitamin supplements(AREDS-2).For eAMD,anti-VEGF therapies using either pro re nata(PRN)or TAE protocols are recommended,with photodynamic therapy in appropriate cases.New cellular information will direct future,potential therapies and these will originate from experimental models,such as the proposed eye bank model using the MGS,that leverages the prospective AREDS database.
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
基金The National Natural Science Foundation of China (No.60472058, 60975017)
文摘In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion (JND) model and the auto-regressive (AR) model is explored. First, a new texture segmentation method exploiting the JND profile is devised to detect and classify texture regions in video scenes. In this step, a spatial-temporal JND model is proposed and the JND energy of every micro-block unit is computed and compared with the threshold. Secondly, in order to effectively remove temporal redundancies while preserving high visual quality, an AR model is applied to synthesize the texture regions. All the parameters of the AR model are obtained by the least-squares method and each pixel in the texture region is generated as a linear combination of pixels taken from the closest forward and backward reference frames. Finally, the proposed method is compared with the H.264/AVC video coding system to demonstrate the performance. Various sequences with different types of texture regions are used in the experiment and the results show that the proposed method can reduce the bit-rate by 15% to 58% while maintaining good perceptual quality.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金This research was financially supported by National Natural Science Foundation of China (Grant No. 40604016) and the National Hi-Tech Research and Development Program (863 Program) (Grants No. 2006AA09A102-09 and No. 2007AA06Z229).
文摘Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
基金This project is supported by the 10th Five-year Plan Pre-research Project Foundation of China Weapon Industry Company, China(No.42001080701).
文摘The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
基金National Natural Science Foundation of China (Grant No. 30271538)985 program,Ministry of Education of China
文摘To discover new lead compounds for M1 agonists. Ten typical M1 agonists were superimposed to build a M1 agonists 3D-pharmacophore model using distance-comparisons (DISCO) method without the previous knowledge of the three-dimensional structure of M1 receptor. Virtual screening strategy was used to analyze the Available Chemicals Directory-Screening Compounds (ACD-SC) to identify possible new hits. Twenty-two compounds which fit the pharmacophore model well and are not similar with known M1 agonists were purchased in order to evaluate their M1 receptor agonist activity. One of them shows M1 receptor agonist activity with EC50 of 4.90 μmol/L and maximum response. Multiple of 10.0 which shows it worthy of further study as a new lead compound for M1 agonists.
基金Project (51775481) supported by the National Natural Science Foundation of ChinaProject (E2019203418) supported by the Natural Science Foundation of Hebei Province, ChinaProject (ZD2017078) supported by the Science and Technology Plan of Hebei Higher School of Education Department, China。
文摘In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. The errors between the predicted values of the two theoretical prediction models and experimental values were calculated by error analysis. The forming limit curves were verified by the punch stretch test to evaluate the prediction accuracy of M K model and Lou Huh criterion. The error analysis results show that the mean error of Lou Huh criterion with the optimal parameters for all tensile specimens is 25.04%, while the mean error of M K model for all tensile specimens is 74.24%. The prediction accuracy of Lou Huh criterion in predicting the fracture of AA7075-T6 sheet is higher. The punch stretch test results show that the forming limit curve drawn by Lou Huh criterion can effectively predict the fracture of AA7075-T6 sheet, but the prediction accuracy of M K model is relatively poor.
文摘In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.
基金The authors thank the financial support of Natural Science Foundation of China(U2031112)Natural Science Foundation of Hunan Province(2021JJ30469)Natural Science Youth Foundation of Hunan Province(2020JJ5396).
文摘During high-intensity focused ultrasound(HIFU)treatment,the accurate identification of denatured biological tissue is an important practical problem.In this paper,a novel method based on the improved variational mode decomposition(IVMD)and autoregressive(AR)model was proposed,which identified denatured biological tissue according to the characteristics of ultrasonic scattered echo signals during HIFU treatment.Firstly,the IVMD method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited number of intrinsic mode functions(IMF).The ultrasonic scattered echo signals were reconstructed by the IVMD to achieve denoising.Then,the AR model was introduced to improve the recognition rate of denatured biological tissues.The AR model order parameter was determined by the Akaike information criterion(AIC)and the characteristics of the AR coefficients were extracted.Finally,the optimal characteristics of the AR coefficients were selected according to the results of receiver operating characteristic(ROC).The experiments showed that the signal-to-noise ratio(SNR)and root mean square error(RMSE)of the reconstructed signal obtained by IVMD was better than those obtained by variational mode decomposition(VMD).The IVMD-AR method was applied to the actual ultrasonic scattered echo signals during HIFU treatment,and the support vectormachine(SVM)was used to identify the denatured biological tissue.The results show that compared with sample entropy,information entropy,and energy methods,the proposed IVMD-AR method can more effectively identify denatured biological tissue.The recognition rate of denatured biological tissue was higher,up to 93.0%.
基金supported by the National Basic Research Program of China 2009CB421401/2006CB400503the Chinese Meteorological Administration ProgramGYHY200706001
文摘The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.
基金Supported by National Natural Science Foundation of China (No. 60972038)The Open Research Fund of Na-tional Mobile Communications Research Laboratory, Southeast University (N200911)+3 种基金The Jiangsu Province Universities Natural Science Research Key Grant Project (No. 07KJA51006)ZTE Communications Co., Ltd. (Shenzhen) Huawei Technology Co., Ltd. (Shenzhen)The Research Fund of Nanjing College of Traffic Voca-tional Technology (JY0903)
文摘A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.
文摘The study addresses the integration of the Building Information Modelling (BIM) methodology with Virtual Reality (VR) and Augmented Reality (AR) technologies in the context of the development of a multidisciplinary project, involving architecture, structures, water network and electrical system components. In order to cover in detail the various design features, the case study was limited to a specific area of a house, the sanitary rooms, as it presents sufficient complexity in modeling and the application of VR and AR software. The VR/AR functionalities applied over the BIM model increase the potential of BIM in the construction sector, contributing to the achievement of a high level of collaboration and control of the project based on an immersive and interactive environment. The elaboration of the different phases of a BIM design requires the transfer of models between BIM and VR/AR systems, allowing us to analyze the main advantages that BIM/VR/AR integration can introduce in the construction industry. The study contributes positively to achieving new knowledge in BIM, being disseminated in an academic research work and illustrated in a practical context.