Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in ...Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in Leigong Mountain on the YunnanGuizhou Plateau of southwestern China,involved the collection of 35 surface soil samples from diverse vegetation communities along an elevational gradient ranging from 1210 to 1875 meters.The results reveal a close correspondence between modern pollen assemblages and vegetation zones.Principal Component Analysis(PCA)results indicate that pollen assemblages can effectively distinguish between subtropical montane evergreen broad-leaved forest(SEBF)and subtropical montane deciduous broadleaved forest(SDBF).However,both SEBF and SDBF show significant overlap with subtropical montane evergreen-deciduous broad-leaved mixed forest(SEMF).Detrended Correspondence Analysis(DCA)results clearly distinguish the three vegetation zones,and the first axis of DCA shows a significant positive correlation with elevation(p<0.01,R=0.48).Discriminant Analysis(DA)successfully assigns 94.4%of the modern pollen samples to their respective vegetation zones.Pollen taxa such as Impatiens,Astertype,and Rosaceae exhibit significant indicative capabilities for the SEBF zone,effectively distinguishing this vegetation zone from others.Pinus and Alnus display overrepresentation in the Leigong Mountain region,while Quercus(D,deciduous-type)and Poaceae exhibit high representation in the SEBF zone.In the SEBF zone,both pollen diversity and richness are the lowest.Our study reveals the complex relationship between the richness and diversity of pollen and vegetation.The diversity and richness of tree and shrub pollen are found to be lower than those of the corresponding plants.The pollen-vegetation relationship elucidated in this study serves as a critical reference for reconstructing ancient environments from fossil pollen retrieved in this region.展开更多
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences...The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.展开更多
Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hin...Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(>70%) dominated by Betula(>40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(>80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.展开更多
Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been con...Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted,but little attention has been paid to pollen assemblages of surface lake sediments.In this study,modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics.The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae.Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau.The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation.Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity.When considering the vegetation coverage around the lakes,hierarchical cluster analysis suggests that the studied sites can be divided into four clusters:meadow,steppe,desert-steppe,and desert.The pollen-based vegetation classification models are established using a random forest algorithm.The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau.The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power.It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.展开更多
Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types ...Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the history of vegetation and climate in Lake Qinghai basin. Modern pollen in the lake mainly comes from the nearby vegetation, controlled by the directions and velocity of the wind. The distribution of modern pollen in Lake Qinghai tends to be similar in most part of the lake. The difference of pollen sedimentation process in the lake can be potentially influenced by the focusing function of the lake, river streams, and lake current.展开更多
Fifty-six surface pollen samples from different vegetation zones in the Yili Basin,western Tianshan Mountains,Xinjiang were analyzed to examine the relationships between the surface pollen assemblages and the original...Fifty-six surface pollen samples from different vegetation zones in the Yili Basin,western Tianshan Mountains,Xinjiang were analyzed to examine the relationships between the surface pollen assemblages and the original vegetation.A pollen analysis and a vegetation investigation with a discriminant analysis show that the pollen assemblages greatly differ across disparate vegetation zones.Twelve pollen taxa can be used as significant types for vegetation reconstruction in the basin.These taxa were the most abundant in the surface pollen samples.Cupressaceae pollen percentages were greater than 1%in Cupressaceae shrubs.More than5%of Picea pollen indicates the growth of a Picea forest within 5 km.The subalpine meadow that is distributed widely in the basin is characterized by high content of Artemisia,Chenopodiaceae,Poaceae,Picea,Asteraceae,Taraxacum and Arenaria pollen types.The Artemisia-Chenopodiaceae-Poaceae-Cannabaceae pollen assemblages indicate the presence of montane steppe in the area.Artemisia and Chenopodiaceae pollen dominate the desert steppe and Populus forest.Artemisia pollen percentages were greater than 60%in the Artemisia desert,whereas Chenopodiaceae pollen percentages exceeded 65%in the Chenopodiaceae desert.The Artemisia/Chenopodiaceae(A/C)ratios reflect the vertical moisture changes in the Yili Basin.The mean A/C ratios were greater than 1.2 in the subalpine meadow and montane steppe that occupy the humid zone in the basin.These ratios were between1 and 1.2 in the Cupressaceae shrubs,desert steppe,Populus forest and floodplain meadow.The ratios were less than 0.5 in the Chenopodiaceae desert,which is an arid environment.展开更多
Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was ...Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was conducted across an altitudinal transect(1100-4500 m) on the eastern slope of Gongga Mountain in the eastern Tibetan Plateau with an elevation interval of 50 m.Distributions of major pollen types along the transect indicated a weak correlation between Pinus pollen and the elevation.Distributions of Picea and Abies pollen(percentage sum of 2%-8%) could fairly indicate the elevation range of 2700-3700 m,as well as the subalpine dark coniferous forest and the timberline in the region.High percentage intervals of alpine types of Ericaceae,Cupressaceae and Cyperaceae were correlated to the high-elevation regions(3700-4500 m) dominated by alpine shrub meadow and alpine meadow.Seven altitudinal vegetation belts on the eastern slope of Gongga Mountain were well defined by discriminant analysis conducted on the modern pollen assemblages,as reflected by high values of probability of modern analog.Most of the modern pollen assemblages(88.5%) were typical for the vegetation types at their sampling locations.Thus,the relationship between the modern pollen assemblages and vegetation across the altitudinal transect based on discriminant analysis can be applied to the quantitative reconstruction of paleovegetation changes in the mountain regions of the eastern Tibetan Plateau.展开更多
Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environment...Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environmental management strategies.Despite numerous studies on fossil pollen records in the Rif landscape,research specifically focusing on modern pollen and its implications for understanding human impact on the natural landscape is notably lacking.This paper presents novel anthropogenic pollen indicators for the Rif Mountains and seeks to evaluate the gradients of human impact on the southern Mediterranean landscape.We employed a combination of modern pollen analysis,vegetation survey,and ordination techniques,incorporating various environmental and land-use variables.Canonical correspondence analysis(CCA)allowed us to evaluate the relationships between pollen types and environmental variables,helping us identify key anthropogenic pollen indicators associated with land use and human activities:Poaceae,Cannabist,Olea-t,and Asteraceae for cultivation;Brassicaceae,Genista-t,Poaceae,Asteraceae and Plantago-t,for grazing;Apiaceae,Urtica-t and Genista-t for slashing and burning.Additionally,an anthropogenic index score(AIS)was calculated for each sampled location.Correspondence analysis(CA)was then used to correlate each specific pollen type with levels of human impact as follows(a)low(e.g.,Cedrus atlantica-t,Quercus canariensis-t),(b)moderate(e.g.,Erica-t,Arbutus unedo-t,Eucalyptus-t),and(c)high(e.g.,Cannabis-t,Brassicaceae,Olea-t,Nicotiana-t).This paper enhances our comprehension of land-use dynamics and impact levels,providing essential insights for evaluating anthropogenic impact trends and human-induced changes in the Rif Mountains landscape.展开更多
目的综述松花粉的品种特点、分布、化学成分、药理作用及现代制剂应用研究进展,为其药食两用资源的深入开发利用提供参考。方法通过查阅书籍、Web of science、PubMed、CNKI等数据库以及CNIPA、SAMR、NMPA等网站中已发表松花粉相关文献...目的综述松花粉的品种特点、分布、化学成分、药理作用及现代制剂应用研究进展,为其药食两用资源的深入开发利用提供参考。方法通过查阅书籍、Web of science、PubMed、CNKI等数据库以及CNIPA、SAMR、NMPA等网站中已发表松花粉相关文献进行分析和归纳总结。结果松花粉药食同源,含有多种化学成分,包括黄酮类、甾醇类、多糖类、脂肪类等。具有抗氧化、抗炎、增强免疫力等多种药理活性。结论松花粉具有广泛的药理作用和食用价值,其在药用、食用领域有待更深入的研究,应完善其质量标准、拓宽其临床应用以及研制开发成新制剂.展开更多
青藏高原自然环境受人类干扰相对较小,为利用古孢粉记录重建气候因子提供了可能,高原过去气候因子的重建对于预测未来气候变化趋势有重要意义.通过选取的29条高原化石孢粉记录,利用现代类比法和化石孢粉点与高原气温的函数关系,把化石...青藏高原自然环境受人类干扰相对较小,为利用古孢粉记录重建气候因子提供了可能,高原过去气候因子的重建对于预测未来气候变化趋势有重要意义.通过选取的29条高原化石孢粉记录,利用现代类比法和化石孢粉点与高原气温的函数关系,把化石孢粉点古气温转化为青藏高原古气温,重建了高原全新世1月和7月古气温序列.结果表明:对于1月和7月气温而言,全新世早期(11.5~8.5ka BP)为气温波动上升期;全新世中期(8.5~4.6 ka BP)为全新世大暖期,气温整体高于现代;全新世晚期(4.6 ka BP~至今)又可分为两个阶段,一个是4.6~2.4 ka BP,在此阶段1月和7月气温都有减小的趋势,另一个阶段则是2.4 ka BP至今,气温出现反常的趋势.展开更多
基金supported by the National Natural Science Foundation of China(grant numbers 42171157,42107475 and 41907379)College Students'Innovation and Entrepreneurship Program of Nantong University,and Foundation of Hunan Province(2023JJ40099 and 23B0678)。
文摘Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in Leigong Mountain on the YunnanGuizhou Plateau of southwestern China,involved the collection of 35 surface soil samples from diverse vegetation communities along an elevational gradient ranging from 1210 to 1875 meters.The results reveal a close correspondence between modern pollen assemblages and vegetation zones.Principal Component Analysis(PCA)results indicate that pollen assemblages can effectively distinguish between subtropical montane evergreen broad-leaved forest(SEBF)and subtropical montane deciduous broadleaved forest(SDBF).However,both SEBF and SDBF show significant overlap with subtropical montane evergreen-deciduous broad-leaved mixed forest(SEMF).Detrended Correspondence Analysis(DCA)results clearly distinguish the three vegetation zones,and the first axis of DCA shows a significant positive correlation with elevation(p<0.01,R=0.48).Discriminant Analysis(DA)successfully assigns 94.4%of the modern pollen samples to their respective vegetation zones.Pollen taxa such as Impatiens,Astertype,and Rosaceae exhibit significant indicative capabilities for the SEBF zone,effectively distinguishing this vegetation zone from others.Pinus and Alnus display overrepresentation in the Leigong Mountain region,while Quercus(D,deciduous-type)and Poaceae exhibit high representation in the SEBF zone.In the SEBF zone,both pollen diversity and richness are the lowest.Our study reveals the complex relationship between the richness and diversity of pollen and vegetation.The diversity and richness of tree and shrub pollen are found to be lower than those of the corresponding plants.The pollen-vegetation relationship elucidated in this study serves as a critical reference for reconstructing ancient environments from fossil pollen retrieved in this region.
基金supported by the National Basic Research Program of China(Grant No.2012CB956102)the National Natural Science Foundation of China(Grant Nos.41071126,41125006,41401227)the China Postdoctoral Science Foundation(Grant No.2014M550822)
文摘The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600501)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070101)the National Natural Science Foundation of China(Grant Nos.41572353,41401228&41690113)
文摘Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(>70%) dominated by Betula(>40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(>80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.
基金the National Natural Science Foundation of China(Grant Nos.41671202&41690113)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070101)the National Key Research and Development Program of China(Grant No.2016YFA0600501)。
文摘Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted,but little attention has been paid to pollen assemblages of surface lake sediments.In this study,modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics.The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae.Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau.The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation.Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity.When considering the vegetation coverage around the lakes,hierarchical cluster analysis suggests that the studied sites can be divided into four clusters:meadow,steppe,desert-steppe,and desert.The pollen-based vegetation classification models are established using a random forest algorithm.The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau.The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power.It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.
基金Supported by National Natural Science Foundation of China (Grant No. 40599423)National Basic Research Program of China (Grant No. 2004CB720202)the West Light Foundation
文摘Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the history of vegetation and climate in Lake Qinghai basin. Modern pollen in the lake mainly comes from the nearby vegetation, controlled by the directions and velocity of the wind. The distribution of modern pollen in Lake Qinghai tends to be similar in most part of the lake. The difference of pollen sedimentation process in the lake can be potentially influenced by the focusing function of the lake, river streams, and lake current.
基金supported by the National Natural Science Foundation of China(41102113 and 41172161)the National Basic Research Program of China (2010CB950204)a MOST Special Fund (KN212431) from the Institute of Vertebrate Paleontology and Paleoanthropology for supporting the project
文摘Fifty-six surface pollen samples from different vegetation zones in the Yili Basin,western Tianshan Mountains,Xinjiang were analyzed to examine the relationships between the surface pollen assemblages and the original vegetation.A pollen analysis and a vegetation investigation with a discriminant analysis show that the pollen assemblages greatly differ across disparate vegetation zones.Twelve pollen taxa can be used as significant types for vegetation reconstruction in the basin.These taxa were the most abundant in the surface pollen samples.Cupressaceae pollen percentages were greater than 1%in Cupressaceae shrubs.More than5%of Picea pollen indicates the growth of a Picea forest within 5 km.The subalpine meadow that is distributed widely in the basin is characterized by high content of Artemisia,Chenopodiaceae,Poaceae,Picea,Asteraceae,Taraxacum and Arenaria pollen types.The Artemisia-Chenopodiaceae-Poaceae-Cannabaceae pollen assemblages indicate the presence of montane steppe in the area.Artemisia and Chenopodiaceae pollen dominate the desert steppe and Populus forest.Artemisia pollen percentages were greater than 60%in the Artemisia desert,whereas Chenopodiaceae pollen percentages exceeded 65%in the Chenopodiaceae desert.The Artemisia/Chenopodiaceae(A/C)ratios reflect the vertical moisture changes in the Yili Basin.The mean A/C ratios were greater than 1.2 in the subalpine meadow and montane steppe that occupy the humid zone in the basin.These ratios were between1 and 1.2 in the Cupressaceae shrubs,desert steppe,Populus forest and floodplain meadow.The ratios were less than 0.5 in the Chenopodiaceae desert,which is an arid environment.
基金supported by the National Natural Science Foundation of China(41102221 and 41071131)the National Basic Research Program of China(2005CB422002)+1 种基金the Open Research Fund of Key Laboratory of Tibetan Environmental Changes and Land Surface Processes,Chinese Academy of Sciences(TEL 201205)the China Postdoctoral Science Foundation(20110490572)
文摘Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was conducted across an altitudinal transect(1100-4500 m) on the eastern slope of Gongga Mountain in the eastern Tibetan Plateau with an elevation interval of 50 m.Distributions of major pollen types along the transect indicated a weak correlation between Pinus pollen and the elevation.Distributions of Picea and Abies pollen(percentage sum of 2%-8%) could fairly indicate the elevation range of 2700-3700 m,as well as the subalpine dark coniferous forest and the timberline in the region.High percentage intervals of alpine types of Ericaceae,Cupressaceae and Cyperaceae were correlated to the high-elevation regions(3700-4500 m) dominated by alpine shrub meadow and alpine meadow.Seven altitudinal vegetation belts on the eastern slope of Gongga Mountain were well defined by discriminant analysis conducted on the modern pollen assemblages,as reflected by high values of probability of modern analog.Most of the modern pollen assemblages(88.5%) were typical for the vegetation types at their sampling locations.Thus,the relationship between the modern pollen assemblages and vegetation across the altitudinal transect based on discriminant analysis can be applied to the quantitative reconstruction of paleovegetation changes in the mountain regions of the eastern Tibetan Plateau.
文摘Understanding the relationship between modern pollen and vegetation is crucial for interpreting fossil pollen records and assessing human impact on the environment,both of which are essential for effective environmental management strategies.Despite numerous studies on fossil pollen records in the Rif landscape,research specifically focusing on modern pollen and its implications for understanding human impact on the natural landscape is notably lacking.This paper presents novel anthropogenic pollen indicators for the Rif Mountains and seeks to evaluate the gradients of human impact on the southern Mediterranean landscape.We employed a combination of modern pollen analysis,vegetation survey,and ordination techniques,incorporating various environmental and land-use variables.Canonical correspondence analysis(CCA)allowed us to evaluate the relationships between pollen types and environmental variables,helping us identify key anthropogenic pollen indicators associated with land use and human activities:Poaceae,Cannabist,Olea-t,and Asteraceae for cultivation;Brassicaceae,Genista-t,Poaceae,Asteraceae and Plantago-t,for grazing;Apiaceae,Urtica-t and Genista-t for slashing and burning.Additionally,an anthropogenic index score(AIS)was calculated for each sampled location.Correspondence analysis(CA)was then used to correlate each specific pollen type with levels of human impact as follows(a)low(e.g.,Cedrus atlantica-t,Quercus canariensis-t),(b)moderate(e.g.,Erica-t,Arbutus unedo-t,Eucalyptus-t),and(c)high(e.g.,Cannabis-t,Brassicaceae,Olea-t,Nicotiana-t).This paper enhances our comprehension of land-use dynamics and impact levels,providing essential insights for evaluating anthropogenic impact trends and human-induced changes in the Rif Mountains landscape.
文摘目的综述松花粉的品种特点、分布、化学成分、药理作用及现代制剂应用研究进展,为其药食两用资源的深入开发利用提供参考。方法通过查阅书籍、Web of science、PubMed、CNKI等数据库以及CNIPA、SAMR、NMPA等网站中已发表松花粉相关文献进行分析和归纳总结。结果松花粉药食同源,含有多种化学成分,包括黄酮类、甾醇类、多糖类、脂肪类等。具有抗氧化、抗炎、增强免疫力等多种药理活性。结论松花粉具有广泛的药理作用和食用价值,其在药用、食用领域有待更深入的研究,应完善其质量标准、拓宽其临床应用以及研制开发成新制剂.
文摘青藏高原自然环境受人类干扰相对较小,为利用古孢粉记录重建气候因子提供了可能,高原过去气候因子的重建对于预测未来气候变化趋势有重要意义.通过选取的29条高原化石孢粉记录,利用现代类比法和化石孢粉点与高原气温的函数关系,把化石孢粉点古气温转化为青藏高原古气温,重建了高原全新世1月和7月古气温序列.结果表明:对于1月和7月气温而言,全新世早期(11.5~8.5ka BP)为气温波动上升期;全新世中期(8.5~4.6 ka BP)为全新世大暖期,气温整体高于现代;全新世晚期(4.6 ka BP~至今)又可分为两个阶段,一个是4.6~2.4 ka BP,在此阶段1月和7月气温都有减小的趋势,另一个阶段则是2.4 ka BP至今,气温出现反常的趋势.