The earthquake forces used in design codes of buildings should be theoretically determinable. This work examines the seismic force modification factor R based on elastic-plastic time-history earthquake analysis of SDO...The earthquake forces used in design codes of buildings should be theoretically determinable. This work examines the seismic force modification factor R based on elastic-plastic time-history earthquake analysis of SDOF systems, wherein the hys-teresis models are elastic-perfectly-plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped and bilinear-elastic. The latter two models are analysed for separating the effect of the ductility and the energy-dissipating capacity. Three-hundred eighty-eight earthquake records from different site conditions are used in analysis. The ductility is taken to be 2, 3, 4, 5 and 6, with the damping ratio being 0.02, 0.035 and 0.05 respectively. The post-yield stiffness ratios 0.0, 0.1 and 0.2 are used in the analysis. The R spectra are standardized by the characteristic period of the earthquake records, which leads to a much smaller scatter in averaged numerical results. It was found that the most important factor determining R is the ductility. R increases more than linearly with ductility. The energy-dissipating capacity, damping and the post-yield stiffness are the less important factors. The energy dissipating capacity is important only for structures with short period and moderate period (0.3≤T/Tg<5.0). For EPP and ELH models, R for 0.05 damping is 10% to 15% smaller than for 0.02 damping. For EPP and ELH models, greater post-yield stiffness leads to greater R, but the influence of post-yield stiffness is obvious only when the post-yield stiffness is less than 10% of the initial stiffness. By means of statistical regression analysis the relation of the seismic force modification factor R with the natural period of the system and ductility for EPP and ELH models were established for each site and soil condition.展开更多
The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics(MD)simulati...The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics(MD)simulations.In this work,the short-range repulsive interaction of a reactive force field(ReaxFF),describing Fe-Ni-Al alloy system,is well modified by adding a tabulated function form based on Ziegler-Biersack-Littmark(ZBL)potential.The modified interaction covers three ranges,including short range,smooth range,and primordial range.The short range is totally predominated by ZBL potential.The primordial range means the interactions in this range is the as-is ReaxFF with no changes.The smooth range links the short-range ZBL and primordial-range ReaxFF potentials with a taper function.Both energies and forces are guaranteed to be continuous,and qualified to the consistent requirement in LAMMPS.This modified force field is applicable for simulations of energetic particle bombardments and reproducing point defects'booming and recombination effectively.展开更多
Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mo...Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.展开更多
文摘The earthquake forces used in design codes of buildings should be theoretically determinable. This work examines the seismic force modification factor R based on elastic-plastic time-history earthquake analysis of SDOF systems, wherein the hys-teresis models are elastic-perfectly-plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped and bilinear-elastic. The latter two models are analysed for separating the effect of the ductility and the energy-dissipating capacity. Three-hundred eighty-eight earthquake records from different site conditions are used in analysis. The ductility is taken to be 2, 3, 4, 5 and 6, with the damping ratio being 0.02, 0.035 and 0.05 respectively. The post-yield stiffness ratios 0.0, 0.1 and 0.2 are used in the analysis. The R spectra are standardized by the characteristic period of the earthquake records, which leads to a much smaller scatter in averaged numerical results. It was found that the most important factor determining R is the ductility. R increases more than linearly with ductility. The energy-dissipating capacity, damping and the post-yield stiffness are the less important factors. The energy dissipating capacity is important only for structures with short period and moderate period (0.3≤T/Tg<5.0). For EPP and ELH models, R for 0.05 damping is 10% to 15% smaller than for 0.02 damping. For EPP and ELH models, greater post-yield stiffness leads to greater R, but the influence of post-yield stiffness is obvious only when the post-yield stiffness is less than 10% of the initial stiffness. By means of statistical regression analysis the relation of the seismic force modification factor R with the natural period of the system and ductility for EPP and ELH models were established for each site and soil condition.
基金Project supported by the National Magnetic Confinement Fusion Energy Research Project(Grant Nos.2019YFE03120003,2018YFE0307100,and 2017YFE0302500)the National Natural Science Foundation of China(Grant Nos.11975034,11921006,12004010,and U20B2025).
文摘The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics(MD)simulations.In this work,the short-range repulsive interaction of a reactive force field(ReaxFF),describing Fe-Ni-Al alloy system,is well modified by adding a tabulated function form based on Ziegler-Biersack-Littmark(ZBL)potential.The modified interaction covers three ranges,including short range,smooth range,and primordial range.The short range is totally predominated by ZBL potential.The primordial range means the interactions in this range is the as-is ReaxFF with no changes.The smooth range links the short-range ZBL and primordial-range ReaxFF potentials with a taper function.Both energies and forces are guaranteed to be continuous,and qualified to the consistent requirement in LAMMPS.This modified force field is applicable for simulations of energetic particle bombardments and reproducing point defects'booming and recombination effectively.
基金Supported by the Hong Kong Research Grant Council (No.CERG 621S05)
文摘Thin-walled tubes are extensively applied in engineering, especially in vehicle structures to resist axial or traversal impact loads, for their excellent energy absorbing capacity. However, in the axial deformation mode, the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures, cargo and environment. Aiming to develop energy absorbers with impact-force modificator, square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube. A small device is designed to serve as an impact-force modificator, which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube, so as to reduce the peak force. Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption. The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube. With future improvements, it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.