The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain f...The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.展开更多
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t...Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.展开更多
Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and par...Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.展开更多
Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and...Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.展开更多
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more ...Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.展开更多
Type 2 diabetes mellitus(T2DM)is a lifelong condition and a grave threat to human health.Innovative efforts to relieve its detrimental effects are acutely needed.The sine qua non in T2DM management is consistent adher...Type 2 diabetes mellitus(T2DM)is a lifelong condition and a grave threat to human health.Innovative efforts to relieve its detrimental effects are acutely needed.The sine qua non in T2DM management is consistent adherence to a prudent lifestyle and nutrition,combined with aerobic and resistance exercise regimens,together repeatedly shown to lead to complete reversal and even longterm remission.Non-adherence to the above lifestyle adjustments condemns any treatment effort and ultimately the patient to a grim fate.It is thus imperative that every study evaluating the effects of innovative interventions in T2DM objectively compares the novel treatment modality to lifestyle modifications,preferably through double-blind controlled randomization,before claiming efficacy.展开更多
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be d...As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.展开更多
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa...Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.展开更多
As naturally sourced proteins,peanut proteins have garnered significant attention from the food industry,owing to their numerous advantages,such as easy extraction,non-pungency,and high bioavailability.Furthermore,pea...As naturally sourced proteins,peanut proteins have garnered significant attention from the food industry,owing to their numerous advantages,such as easy extraction,non-pungency,and high bioavailability.Furthermore,peanut proteins are highly digestible in the gastrointestinal tract and boast a high net protein utilization rate,making them an appealing protein source in food products and a promising alternative to animal protein.In this paper,the recent works on the extraction method,modification method,and application of peanut proteins were reviewed.Both advantages and disadvantages of current extraction and modification were discussed.Recently updated information about peanut protein research was summarized.Based on these,the prospection of peanut proteins research was presented,which may be instructive for future research in this field.Future research is still needed for accessible modification methods to develop the functional properties of peanut proteins.展开更多
Epigenetic modifications modulate conformational structure of chromatin and consequently gene expression by enzyme-mediated chemical modifications of DNA and histones.The activities of epigenetic modifying enzymes dep...Epigenetic modifications modulate conformational structure of chromatin and consequently gene expression by enzyme-mediated chemical modifications of DNA and histones.The activities of epigenetic modifying enzymes depend on many co-substrates and cofactors,such as 2-oxoglutarate(2-OG),iron,S-adenosylmethionine(SAM),nicotinamide adenine dinucleotide(NAD+),flavin adenine dinucleotide(FAD),and acetyl-CoA.These factors are inter-connecting molecules that integrate cellular nutrient metabolism and redox homeostasis,two key regulators of cell proliferation,cell survival,and cell functions.Dysregulation of such delicate regulatory network has been implicated in many pathological conditions and also been increasingly recognized as an emerging mechanism responsible for environmental pollutant-induced adverse effects.In this review,we first summarize DNA and histone modifying enzymes and their essential factors,then discuss the metabolic sources and the redox regulatory roles of these enzymatic factors,and finally elaborate the mechanisms of how targeting such factors by environmental pollutants influences epigenetic regulation and perturbs cellular functions.展开更多
基金supported by the Natural Science Foundation Project of China(81820108015,82201683)China Postdoctoral Science Foundation(2021M693926,2020TQ0393,2020M683634XB)+1 种基金Chongqing Science&Technology Commission(cstc2021jcyj-bshX0150,cstc2021jcyj-bshX0201)Special Funding for Chongqing Postdoctoral Research Projects(2021XMT001)。
文摘The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.
基金the financial support received from Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management(IRC-HTCM)at King Fahd University of Petroleum and Minerals(KFUPM),specifically under project#INHE2213。
文摘Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.
基金supported by the National Natural Science Foundation of China(U22A20383,82003668)the Natural Science Foundation of Zhejiang Province(LD22H300002,LQ21H300002)Ningbo Technology Innovation 2025 Major Special Project(2022Z150).
文摘Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
文摘Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.
基金supported by the National Natural Science Foundation of China,No.82171062(to JFZ)Aier Eye Hospital Group Scientific Research Fund,No.AF2101D8(to LMG).
文摘Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.
文摘Type 2 diabetes mellitus(T2DM)is a lifelong condition and a grave threat to human health.Innovative efforts to relieve its detrimental effects are acutely needed.The sine qua non in T2DM management is consistent adherence to a prudent lifestyle and nutrition,combined with aerobic and resistance exercise regimens,together repeatedly shown to lead to complete reversal and even longterm remission.Non-adherence to the above lifestyle adjustments condemns any treatment effort and ultimately the patient to a grim fate.It is thus imperative that every study evaluating the effects of innovative interventions in T2DM objectively compares the novel treatment modality to lifestyle modifications,preferably through double-blind controlled randomization,before claiming efficacy.
基金supported by the National High Level Hospital Clinical Research Funding:2022-PUMCH-A-191.
文摘As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11565003)the Jiangxi Province Academic Degree and Postgraduate Education and Teaching Reform Research Project (Grant No. JXYJG-2022-180)the Scientific Research Base Project of Gannan Normal University (Grant No. 22wdxt01)。
文摘Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.
基金the Natural Science Foundation of Shandong Province[grant number ZR2020QC218]Key R&D plan of Shandong Province[grant number 2019YYSP005]+2 种基金Major Science and Technology Projects of Shandong Province[grant number2019JZZY010722]Qingdao Municipal Science and Technology Benefit People Project[grant number 20-3-4-34-nsh]Breeding Plan of Shandong Provincial Qingchuang Research Team[grant number 2021-Innovation Team of Functional Plant Protein-Based Food]。
文摘As naturally sourced proteins,peanut proteins have garnered significant attention from the food industry,owing to their numerous advantages,such as easy extraction,non-pungency,and high bioavailability.Furthermore,peanut proteins are highly digestible in the gastrointestinal tract and boast a high net protein utilization rate,making them an appealing protein source in food products and a promising alternative to animal protein.In this paper,the recent works on the extraction method,modification method,and application of peanut proteins were reviewed.Both advantages and disadvantages of current extraction and modification were discussed.Recently updated information about peanut protein research was summarized.Based on these,the prospection of peanut proteins research was presented,which may be instructive for future research in this field.Future research is still needed for accessible modification methods to develop the functional properties of peanut proteins.
基金This work is funded by National Natural Science Foundation of China(No.81773466)to W.H,and by Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease(No.DXWL2023-06)to W.X.
文摘Epigenetic modifications modulate conformational structure of chromatin and consequently gene expression by enzyme-mediated chemical modifications of DNA and histones.The activities of epigenetic modifying enzymes depend on many co-substrates and cofactors,such as 2-oxoglutarate(2-OG),iron,S-adenosylmethionine(SAM),nicotinamide adenine dinucleotide(NAD+),flavin adenine dinucleotide(FAD),and acetyl-CoA.These factors are inter-connecting molecules that integrate cellular nutrient metabolism and redox homeostasis,two key regulators of cell proliferation,cell survival,and cell functions.Dysregulation of such delicate regulatory network has been implicated in many pathological conditions and also been increasingly recognized as an emerging mechanism responsible for environmental pollutant-induced adverse effects.In this review,we first summarize DNA and histone modifying enzymes and their essential factors,then discuss the metabolic sources and the redox regulatory roles of these enzymatic factors,and finally elaborate the mechanisms of how targeting such factors by environmental pollutants influences epigenetic regulation and perturbs cellular functions.