In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructur...In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction..展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using...Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH;-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH;species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH;species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds.展开更多
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of...Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.展开更多
The cracking and aromatization of n hexane over H ZSM 5 modified by various rare earths were investigated by means of continuous flow micro reactor. The surface properties of modified H ZSM 5 catalysts were obta...The cracking and aromatization of n hexane over H ZSM 5 modified by various rare earths were investigated by means of continuous flow micro reactor. The surface properties of modified H ZSM 5 catalysts were obtained from IR, XRD and XPS. The results show that the rare earths enhance the aromatizing properties of the catalysts which are prepared by mechanical mixture method. The results of n hexane cracking and aromatization are correlated with the acidity. The Brnsted acidic sites are the active sites of n hexane aromatization, while Lewis acid site plays an important role in n hexane cracking.展开更多
In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorpt...In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorption–desorption, NH_3-TPD, MCH-TPD, H_2-TPR, and pyridine-FTIR,and tested as catalysts for the dehydrogenation aromatization and isomerization of methylcyclohexane(MCH) under the conditions of S-Zorb catalytic adsorption desulfurization(T ? 673 K, P ? 1.5 MPa, WHSV ? 5 h^(-1)). The H2-TPR results showed that the interaction of NiO with support decreased in the order of NiO/ZSM-5-Fe < NiO/ZSM-5 < NiO/Al_2O_3< NiO/SiO2. The decrease of the interaction appeared to facilitate the reduction of Ni and therefore to promote the dehydrogenation aromatization of MCH.It was found that a direct correlation existed between the gasoline components yields, cracking activity and the total number of different supports acid sites measured by NH_3-TPD tests. Higher total acidity of ZSM-5 resulted in gasoline loss because of higher cracking activity of MCH. The number of total acid sites of NiO/ZSM-5-Fe decreased and the medium strong Br€onsted acid sites necessary for MCH isomerization increased after the modification of ZSM-5 by iron metal. So, NiO/ZSM-5-Fe exhibited enhanced MCH conversion, aromatic and isomerization yields when compared to NiO/ZSM-5 and other Ni-based catalysts. This study shows that NiO/ZSM-5-Fe catalyst may be possible to be integrated into the S-Zorb system achieving the recovery of the octane number of gasoline.展开更多
The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reac...The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reaction conditions the selectivity of alkenes to high-octane gasoline blending components was markedly enhanced and the formation of propane and butanes was greatly suppressed with the addition of DME.It was also found that the distribution of C5+ components was changed a lot with DME addition into the LPG feed.The formation of branched hydrocarbons (mainly C6 C8 i-paraffin) and multi-methyl substituted aromatics,which are high octane number gasoline blending components,was promoted significantly,while the content of n-paraffins and olefins in C5+ components was decreased obviously,indicating that in addition to the oligomerization,cracking,hydrogen-transfer and dehydrogenation-cyclization of alkenes,the methylation of the formed aromatics and olefins intermediates also plays an important role in determining the product distribution due to the high reactivity of surface methoxy groups formed by DME.And this process,in combination with the syngas-to-methanol/DME technology,provides an alternative way to the production of high-octane gasoline from coal,natural gas or renewable raw materials.展开更多
Ga-Al-MFI samples were synthesized in hydrothermal conditions from gels of composition 1.08CH3NH2- 0.134TPABr-1SiO2-xAl2O3-yGa2O3-40H2O at 175 ℃ for 7 days, with x = 0.005 and 0.0025, y = 0.005, 0,010 and 0.020. The ...Ga-Al-MFI samples were synthesized in hydrothermal conditions from gels of composition 1.08CH3NH2- 0.134TPABr-1SiO2-xAl2O3-yGa2O3-40H2O at 175 ℃ for 7 days, with x = 0.005 and 0.0025, y = 0.005, 0,010 and 0.020. The samples were characterized by XRD, BET measurements, thermal analysis (TGA-DTA) atomic absorption and high resolution solid state MAS 27Al and 71Ga NMR measurements. The aromatization of propane was studied as catalytic test. The activity and selectivity of the catalysts were determined for benzene, toluene and xylenes on the one hand and for methane and ethane on the other hand. The most active sample was obtained with the highest Ga/AI ratio. For this sample, the BTX selectivity obtained by aromatization was always higher than the hydrocracking selectivity leading to methane and ethane. The relative amount of toluene was higher than that of benzene and ofxylenes. The samples were deactivated by coke formation that was revealed more severe for the most active sample,展开更多
基金Supported by the Key Technology and Demonstration on Low Rank Coal Clean,Efficient and Cascade Application ProjectSynthesis Technology of Coal-based Bulk Chemical and FuelResearch on Key Technology of Methanol to Aromatics(MTA)(XDA07070800)
文摘In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction..
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
基金entrusted by the Project of "utilization of low rank coal" strategic leading special fundstrategic leading special fund of CAS (XDA-07070800 and XDA-07070400)the Opening Foundation of State Key Laboratory of Coal Conversion (J16-17-602)
文摘Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH;-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH;species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH;species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds.
基金supported by the National Natural Science Foundation of China(Nos.21276067 and 21676074)Programs of International S&T cooperation(No.2014DFR41110)
文摘Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.
文摘The cracking and aromatization of n hexane over H ZSM 5 modified by various rare earths were investigated by means of continuous flow micro reactor. The surface properties of modified H ZSM 5 catalysts were obtained from IR, XRD and XPS. The results show that the rare earths enhance the aromatizing properties of the catalysts which are prepared by mechanical mixture method. The results of n hexane cracking and aromatization are correlated with the acidity. The Brnsted acidic sites are the active sites of n hexane aromatization, while Lewis acid site plays an important role in n hexane cracking.
基金financial support from the National Natural Science Foundation of China(21433001,21406251 and 21403265)Science and Technology Development Projects of SINOPEC,China(No.113138,112008 and 110099)The Young Taishan Scholars Program of Shandong Province(tsqn20161052)
文摘In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorption–desorption, NH_3-TPD, MCH-TPD, H_2-TPR, and pyridine-FTIR,and tested as catalysts for the dehydrogenation aromatization and isomerization of methylcyclohexane(MCH) under the conditions of S-Zorb catalytic adsorption desulfurization(T ? 673 K, P ? 1.5 MPa, WHSV ? 5 h^(-1)). The H2-TPR results showed that the interaction of NiO with support decreased in the order of NiO/ZSM-5-Fe < NiO/ZSM-5 < NiO/Al_2O_3< NiO/SiO2. The decrease of the interaction appeared to facilitate the reduction of Ni and therefore to promote the dehydrogenation aromatization of MCH.It was found that a direct correlation existed between the gasoline components yields, cracking activity and the total number of different supports acid sites measured by NH_3-TPD tests. Higher total acidity of ZSM-5 resulted in gasoline loss because of higher cracking activity of MCH. The number of total acid sites of NiO/ZSM-5-Fe decreased and the medium strong Br€onsted acid sites necessary for MCH isomerization increased after the modification of ZSM-5 by iron metal. So, NiO/ZSM-5-Fe exhibited enhanced MCH conversion, aromatic and isomerization yields when compared to NiO/ZSM-5 and other Ni-based catalysts. This study shows that NiO/ZSM-5-Fe catalyst may be possible to be integrated into the S-Zorb system achieving the recovery of the octane number of gasoline.
基金supported by the "Action Plan of CAS to Support China’s New and Strategic Industries with Science and Technology(2012-2014)"the "Knowledge Innovation Program of the Chinese Academy of Sciences(S201041)""Youth Innovation Promotion Association CAS(2012-2015)"
文摘The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reaction conditions the selectivity of alkenes to high-octane gasoline blending components was markedly enhanced and the formation of propane and butanes was greatly suppressed with the addition of DME.It was also found that the distribution of C5+ components was changed a lot with DME addition into the LPG feed.The formation of branched hydrocarbons (mainly C6 C8 i-paraffin) and multi-methyl substituted aromatics,which are high octane number gasoline blending components,was promoted significantly,while the content of n-paraffins and olefins in C5+ components was decreased obviously,indicating that in addition to the oligomerization,cracking,hydrogen-transfer and dehydrogenation-cyclization of alkenes,the methylation of the formed aromatics and olefins intermediates also plays an important role in determining the product distribution due to the high reactivity of surface methoxy groups formed by DME.And this process,in combination with the syngas-to-methanol/DME technology,provides an alternative way to the production of high-octane gasoline from coal,natural gas or renewable raw materials.
基金supported by MIUR PRIN 2010–2011 2010H7PXLC Project on“Innovative downstream processing of conversion of algal biomass for the production of jet fuel and green diesel”
文摘Ga-Al-MFI samples were synthesized in hydrothermal conditions from gels of composition 1.08CH3NH2- 0.134TPABr-1SiO2-xAl2O3-yGa2O3-40H2O at 175 ℃ for 7 days, with x = 0.005 and 0.0025, y = 0.005, 0,010 and 0.020. The samples were characterized by XRD, BET measurements, thermal analysis (TGA-DTA) atomic absorption and high resolution solid state MAS 27Al and 71Ga NMR measurements. The aromatization of propane was studied as catalytic test. The activity and selectivity of the catalysts were determined for benzene, toluene and xylenes on the one hand and for methane and ethane on the other hand. The most active sample was obtained with the highest Ga/AI ratio. For this sample, the BTX selectivity obtained by aromatization was always higher than the hydrocracking selectivity leading to methane and ethane. The relative amount of toluene was higher than that of benzene and ofxylenes. The samples were deactivated by coke formation that was revealed more severe for the most active sample,