期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Error estimates of H^1-Galerkin mixed finite element method for Schrdinger equation 被引量:28
1
作者 LIU Yang LI Hong WANG Jin-feng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期83-89,共7页
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t... An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition. 展开更多
关键词 H1-galerkin mixed finite element method Schrdinger equation LBB condition optimal error estimates
下载PDF
Error Estimates of H^1-Galerkin Mixed Methods for the Viscoelasticity Wave Equation 被引量:1
2
作者 WANG Jin-feng~,LIU Yang~,LI Hong~(1. LIU Yang LI Hong 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第1期131-137,共7页
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique... H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition. 展开更多
关键词 viscoelasticity wave equation H1-galerkin mixed finite element methods existence and uniqueness optimal error estimates
下载PDF
Fully Discrete H^(1) -Galerkin Mixed Finite Element Methods for Parabolic Optimal Control Problems 被引量:1
3
作者 Tianliang Hou Chunmei Liu Hongbo Chen 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2019年第1期134-153,共20页
In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables a... In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element,and the control vari-able is approximated by piecewise constant functions.The time discretization of the state and co-state are based on finite difference methods.First,we derive a priori error estimates for the control variable,the state variables and the adjoint state variables.Second,by use of energy approach,we derive a posteriori error estimates for optimal control problems,assuming that only the underlying mesh is static.A numerical example is presented to verify the theoretical results on a priori error estimates. 展开更多
关键词 Parabolic equations optimal control problems a priori error estimates a posteriori error estimates H^(1)-galerkin mixed finite element methods
原文传递
TWO-GRID ALGORITHM OF H^(1)-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
4
作者 Tianliang Hou Chunmei Liu +2 位作者 Chunlei Dai Luoping Chen Yin Yang 《Journal of Computational Mathematics》 SCIE CSCD 2022年第5期667-685,共19页
In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element... In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization,and backward Euler scheme for temporal discretization.Firstly,a priori error estimates and some superclose properties are derived.Secondly,a two-grid scheme is presented and its convergence is discussed.In the proposed two-grid scheme,the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy.Finally,a numerical experiment is implemented to verify theoretical results of the proposed scheme.The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice h=H^(2). 展开更多
关键词 Semilinear parabolic integro-differential equations H^(1)-galerkin mixed finite element method A priori error estimates Two-grid Superclose.
原文传递
伪双曲方程的全离散修正H^1-Galerkin混合有限元方法(英文)
5
作者 赵利 方志朝 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期130-136,共7页
利用修正的H1-Galerkin混合有限元方法求解了一类来源于神经传导过程的伪双曲型方程.在二维和三维空间下通过引入两个不同物理意义的辅助变量,将模型方程分解成两个一阶系统.对两个系统分别构造了全离散格式.在不需要验证LBB连续性条件... 利用修正的H1-Galerkin混合有限元方法求解了一类来源于神经传导过程的伪双曲型方程.在二维和三维空间下通过引入两个不同物理意义的辅助变量,将模型方程分解成两个一阶系统.对两个系统分别构造了全离散格式.在不需要验证LBB连续性条件和不需要限制逼近空间的条件下得到了最优阶误差估计. 展开更多
关键词 修正的H^1-galerkin混合有限元方法 全离散格式 伪双曲型方程 最优阶误差估计
下载PDF
Nonconforming H^1-Galerkin Mixed FEM for Sobolev Equations on Anisotropic Meshes 被引量:26
6
作者 Dong-yang Shi Hai-hong Wang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期335-344,共10页
A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
关键词 Nonconforming H^1-galerkin mixed finite element method Sobolev equations anisotropic meshes error estimates
原文传递
广义神经传播方程全离散格式的修正混合有限元方法
7
作者 曹京平 李琳琳 《中央民族大学学报(自然科学版)》 2012年第3期29-33,共5页
利用修正的H1-Galerkin混合有限元的方法,研究了广义神经传播方程,得到了全离散解的最优阶误差估计,该方法的优点是不需要验证LBB相容性条件.
关键词 广义神经传播方程 修正H1-galerkin混合有限元方法 全离散解 最优阶误差估计
下载PDF
Optimal Convergence Analysis for Convection Dominated Diffusion Problems
8
作者 M. A. Mohamed Ali 《Journal of Applied Mathematics and Physics》 2013年第3期16-20,共5页
In classical mixed finite element method, the choice of the finite element approximating spaces is restricted by the imposition of the LBB consistency condition. The method of H1-Galerkin mixed finite element method a... In classical mixed finite element method, the choice of the finite element approximating spaces is restricted by the imposition of the LBB consistency condition. The method of H1-Galerkin mixed finite element method avoids completely the imposition of such a condition on the approximating spaces. In this article, we discuss and analyze error estimates for Convection-dominated diffusion problems using H1-Galerkin mixed finite element method, along with the method of characteristics. Optimal order of convergence has been achieved for the error estimates of a two-step Euler backward difference scheme. 展开更多
关键词 H1-galerkin mixed finite element method Characteristics method LBB Condition Optimal Error ESTIMATES and EULER BACKWARD DIFFERENCE Scheme
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部