In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti...Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.展开更多
Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the invest...Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.展开更多
Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sa...Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard k-co models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified k-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified k-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.展开更多
Tensile tests at different strain rates(0.0002, 0.002, 0.02, 1000 and 3000 s^(-1)) were carried out for 7N01 aluminum alloy. Low strain rate experiments(0.0002, 0.002 and 0.02 s^(-1)) were conducted using an electroni...Tensile tests at different strain rates(0.0002, 0.002, 0.02, 1000 and 3000 s^(-1)) were carried out for 7N01 aluminum alloy. Low strain rate experiments(0.0002, 0.002 and 0.02 s^(-1)) were conducted using an electronic mechanical universal testing machine, while high strain rate experiments(1000, 3000 s^(-1)) were carried out through a split Hopkinson tensile bar. The experimental results showed that 7N01 aluminum alloy is strain rate sensitive. By introducing a correction scheme of the strain rate hardening coefficient, a modified Johnson–Cook model was proposed to describe the flow behaviors of 7N01 aluminum alloy. The proposed model fitted the experimental data better than the original Johnson–Cook model in plastic flow under dynamic condition. Numerical simulations of the dynamic tensile tests were performed using ABAQUS with the modified Johnson–Cook model. Digital image correlation was used together with high-speed photography to study the mechanical characters of specimen at high strain rate. Good correlations between the experiments results, numerical predictions and DIC results are achieved. High accuracy of the modified Johnson-Cook model was validated.展开更多
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft...Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.展开更多
Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra ...Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.展开更多
AIM:To explore the related risk factors for diabetic retinopathy(DR)in type 2 diabetes with insulin therapy.METHODS:We studied the relationships among blood glucose,serum C-peptide,plasma insulin,beta-cell function an...AIM:To explore the related risk factors for diabetic retinopathy(DR)in type 2 diabetes with insulin therapy.METHODS:We studied the relationships among blood glucose,serum C-peptide,plasma insulin,beta-cell function and the development of DR.Beta-cell function was assessed by a modified homeostasis model assessment(modified HOMA)which was gained by using C-peptide to replace insulin in the homeostasis model assessment(HOMA)of beta-cell function.We also studied the relationships between modified HOMA index and serum C-peptide response to 100 g tasteless steamed bread to determine the accuracy of modified HOMA.RESULTS:Our study group consisted of 170 type 2diabetic inpatients with DR(age:58.35±13.87y,mean±SD)and 205 type 2 diabetic inpatients with no DR(NDR)(age:65.52±11.59y).DR patients had higher age,longer diabetic duration,higher hypertension grade,higher postprandial plasma glucose,higher fluctuation level of plasma glucose,lower body mass index(BMI),lower postprandial serum insulin and C-peptide,lower fluctuation level of serum insulin and C-peptide(P【0.05).In our logistic regression model,duration of diabetes,hypertension grade,fasting plasma insulin and glycosylated hemoglobin(HbA1C)were significantly associated with the presence of DR after adjustment for confounding factors(P【0.05).CONCLUSION:Our results suggested although modified HOMA showed significant correlation to the occurrence of DR on Spearman’s rank-correlationanalysis,logistic regression showed no significant association between these two variables after adjustment for relevant confounding factors(such as age,sex,duration of diabetes,BMI,hypertension grade,HbA1C,plasma insulin).Duration of diabetes,hypertension grade,fasting plasma insulin and HbA1C were independently associated with the development of DR in Chinese type 2 diabetics.展开更多
Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for...Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets.In order to investigate and evaluate accuracy of the presented analytic model,obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results.The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics(SPH)implemented utilizing ABAQUS Software.Results indicated that,with increasing initial velocity and ceramic thickness and decreasing support layer thickness,the radius of ceramic cone decreases;this ends up increasing residual velocity of the projectile and penetration time and extending the area across which the pressure is distributed.These findings indicate enhanced levels of target energy absorption and the required energy for bending and tensioning the target.As such,it can be observed that,at the same thickness and areal density,the ceramic target has its efficiency enhanced with increasing ceramic thickness and decreasing the support layer thickness.Finally,the results revealed that the associated data with SPH confirm the modified analytic model at higher accuracy than the Florence’s analytic model.展开更多
In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame ...In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame columns under the combined influence with different admixtures and admixtures ratios(silica fume and hybrid fiber). The expressions for characteristic nodes of the skeleton curve were given by the analysis and numerical regression of the test results. In addition, the hysteretic rules of the restoring-force model and the expression for unloading stiffness were presented. Finally, we summed up the complete calculation method of the hysteretic restoring force, whose results were in good agreement with experiment. The results demonstrated that the proposed model could simulate and reflect the corresponding hysteretic behaviors, and the calculation method can provide the theoretical basis for the engineering application.展开更多
Taking into account the viscoelasticity of the fenugreek gum, a modified Maxwell model in terms of fractional derivatives is developed. Using this model, it is observed that the fenugreek gums with at least two differ...Taking into account the viscoelasticity of the fenugreek gum, a modified Maxwell model in terms of fractional derivatives is developed. Using this model, it is observed that the fenugreek gums with at least two different concentrations obey the Cox-Merz rule.展开更多
The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum v...The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.展开更多
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo...Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.I...The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.展开更多
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a...The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.展开更多
In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an...In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.展开更多
The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 ...The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 K and the strain rate of 0.001-2200 s^−1.The temperature term in Johnson-Cook(JC)constitutive model had been reasonably modified.This advantage made constitutive model promising for decribing the dynamic deformation behavior of AZ31-ND with{0002}texture more accurately.The obtained true stress-true plastic strain curves agreed well with the measured results in a wide range of strain rates and temperatures.The thermal softeninging,strain and strain rate hardening effect on the AZ31-ND with{0002}texture were discussed.The adiabatic shear band(ASB)of AZ31-ND with{0002}texture hat shaped specimen was successfully predicted by combining modified JC constitutive model and numerical simulation,which was also validated by Electron Back-Scattered Diffraction(EBSD)map under the same boundary condition.展开更多
The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation acc...The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.展开更多
The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity m...The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.展开更多
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo...The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.展开更多
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
文摘Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.
基金Project(2009ZX04004-031-04) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.
基金supported by the National Natural Science Foundation of China (Grants No. 51179075 and 51239005) A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard k-co models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified k-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified k-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.
基金Projects(51275532,U1334208)supported by the National Natural Science Foundation of ChinaProject(2015BAG13B01)supported by National Science and Technology Support Program,China+2 种基金Project(2016YFB1200602-33)supported by the National Key R&D Program of ChinaProject(NCET-12-0549)supported by the New Century Excellent Talents in University,ChinaProject(CSUZC201527)supported by the Open-Fund for the Valuable and Precision Instruments of Central South University,China
文摘Tensile tests at different strain rates(0.0002, 0.002, 0.02, 1000 and 3000 s^(-1)) were carried out for 7N01 aluminum alloy. Low strain rate experiments(0.0002, 0.002 and 0.02 s^(-1)) were conducted using an electronic mechanical universal testing machine, while high strain rate experiments(1000, 3000 s^(-1)) were carried out through a split Hopkinson tensile bar. The experimental results showed that 7N01 aluminum alloy is strain rate sensitive. By introducing a correction scheme of the strain rate hardening coefficient, a modified Johnson–Cook model was proposed to describe the flow behaviors of 7N01 aluminum alloy. The proposed model fitted the experimental data better than the original Johnson–Cook model in plastic flow under dynamic condition. Numerical simulations of the dynamic tensile tests were performed using ABAQUS with the modified Johnson–Cook model. Digital image correlation was used together with high-speed photography to study the mechanical characters of specimen at high strain rate. Good correlations between the experiments results, numerical predictions and DIC results are achieved. High accuracy of the modified Johnson-Cook model was validated.
基金Special Fund of Marine Commonweal Industry under contact Nos 201105016 and 201205007supported by National Marine Environment Forecasting Centrethe National Natural Science Foundation of China under contact No.41176012
文摘Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.
基金supported by the Science and Technology Development Foundation of CAEP(No.2015B0103014)the National Natural Science Foundation of China(No.11605163)
文摘Muon tomography is a capable imaging technique to measure the geometry of high-Z objects. However,most existed algorithms used in muon tomography have obscured the effects of angular distribution and momentum spectra of cosmic ray muons and reduced the spatial resolution. We present a modified multi-group model that takes into account these effects and calibrates the model by the material of lead. Performance tests establish that the model is capable of measuring the thickness of a Pb slab and identifying the material of an unknown slab on a reasonable exposure timescale, in both cases of complete and incomplete angular data. Results show that the modified multi-group model is helpful for improvements in image resolution in real applications.
文摘AIM:To explore the related risk factors for diabetic retinopathy(DR)in type 2 diabetes with insulin therapy.METHODS:We studied the relationships among blood glucose,serum C-peptide,plasma insulin,beta-cell function and the development of DR.Beta-cell function was assessed by a modified homeostasis model assessment(modified HOMA)which was gained by using C-peptide to replace insulin in the homeostasis model assessment(HOMA)of beta-cell function.We also studied the relationships between modified HOMA index and serum C-peptide response to 100 g tasteless steamed bread to determine the accuracy of modified HOMA.RESULTS:Our study group consisted of 170 type 2diabetic inpatients with DR(age:58.35±13.87y,mean±SD)and 205 type 2 diabetic inpatients with no DR(NDR)(age:65.52±11.59y).DR patients had higher age,longer diabetic duration,higher hypertension grade,higher postprandial plasma glucose,higher fluctuation level of plasma glucose,lower body mass index(BMI),lower postprandial serum insulin and C-peptide,lower fluctuation level of serum insulin and C-peptide(P【0.05).In our logistic regression model,duration of diabetes,hypertension grade,fasting plasma insulin and glycosylated hemoglobin(HbA1C)were significantly associated with the presence of DR after adjustment for confounding factors(P【0.05).CONCLUSION:Our results suggested although modified HOMA showed significant correlation to the occurrence of DR on Spearman’s rank-correlationanalysis,logistic regression showed no significant association between these two variables after adjustment for relevant confounding factors(such as age,sex,duration of diabetes,BMI,hypertension grade,HbA1C,plasma insulin).Duration of diabetes,hypertension grade,fasting plasma insulin and HbA1C were independently associated with the development of DR in Chinese type 2 diabetics.
文摘Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets.In order to investigate and evaluate accuracy of the presented analytic model,obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results.The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics(SPH)implemented utilizing ABAQUS Software.Results indicated that,with increasing initial velocity and ceramic thickness and decreasing support layer thickness,the radius of ceramic cone decreases;this ends up increasing residual velocity of the projectile and penetration time and extending the area across which the pressure is distributed.These findings indicate enhanced levels of target energy absorption and the required energy for bending and tensioning the target.As such,it can be observed that,at the same thickness and areal density,the ceramic target has its efficiency enhanced with increasing ceramic thickness and decreasing the support layer thickness.Finally,the results revealed that the associated data with SPH confirm the modified analytic model at higher accuracy than the Florence’s analytic model.
基金Project(51178388)supported by the National Natural Science Foundation of ChinaProject(2013SZS01-Z02)supported by Key Laboratory Fund of Shaanxi Province,China
文摘In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame columns under the combined influence with different admixtures and admixtures ratios(silica fume and hybrid fiber). The expressions for characteristic nodes of the skeleton curve were given by the analysis and numerical regression of the test results. In addition, the hysteretic rules of the restoring-force model and the expression for unloading stiffness were presented. Finally, we summed up the complete calculation method of the hysteretic restoring force, whose results were in good agreement with experiment. The results demonstrated that the proposed model could simulate and reflect the corresponding hysteretic behaviors, and the calculation method can provide the theoretical basis for the engineering application.
基金Supported by the National Natural Science Foundation of China(No.29576238).
文摘Taking into account the viscoelasticity of the fenugreek gum, a modified Maxwell model in terms of fractional derivatives is developed. Using this model, it is observed that the fenugreek gums with at least two different concentrations obey the Cox-Merz rule.
基金Project(51675061)supported by the National Natural Science Foundation of China
文摘The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.
基金Project(1301015A)supported by the Post-doctoral Research Fund of Jiangsu Province,ChinaProject Funded by the Priority Academic Program of Jiangsu Higher Education Institution,China+1 种基金Project(2014M561566)supported by China Postdoctoral Science FoundationProject(YK913007)supported by Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Technologies,China
文摘Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.
文摘The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.
文摘The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.
基金financially supported by the National Natural Science Foundation of China (Grant 51278420)the Natural Science Foundation of Shaanxi Province (Grant 2017JM5021)
文摘In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.
基金This work was supported by Surface of the State Natural Science Fund Projects(No.51571145)City of Ningbo“science and technology innovation 2025”major special project(new energy vehicle lightweight magnesium alloy material precision forming technology).
文摘The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 K and the strain rate of 0.001-2200 s^−1.The temperature term in Johnson-Cook(JC)constitutive model had been reasonably modified.This advantage made constitutive model promising for decribing the dynamic deformation behavior of AZ31-ND with{0002}texture more accurately.The obtained true stress-true plastic strain curves agreed well with the measured results in a wide range of strain rates and temperatures.The thermal softeninging,strain and strain rate hardening effect on the AZ31-ND with{0002}texture were discussed.The adiabatic shear band(ASB)of AZ31-ND with{0002}texture hat shaped specimen was successfully predicted by combining modified JC constitutive model and numerical simulation,which was also validated by Electron Back-Scattered Diffraction(EBSD)map under the same boundary condition.
基金Supported by the National Natural Science Foundation of China(61502257,41304031)
文摘The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.
基金Project supported by the Major Program of Sichuan Province Science and Technology Plan,China(Grant No.2015SZ0010)the Scientific Research Foundation of Sichuan Province,China(Grant No.2014GZ0121)
文摘The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51874183 and 51874182)the National Key Research and Development Program of China (Grant No. 2018YFC0809300)。
文摘The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.