Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding...Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding of the mechanisms and factors affecting the adsorption of AOMs onto modified clays. Sodium alginate (polysaccharide) and kaolinite modified with polyaluminium chloride (PAC1) were used as AOMs and modified clay model substances, respectively, and the effects of modifier dosage, contact time, solution pH and ionic strength were investigated through batch adsorption experiments. Kinetics revealed that the alginate adsorption rate was described well by a pseudo-second order model. PACl effectively enhanced the adsorption capacity of kaolinite and increased the adsorption rate, and the optimum additive amount of PACl was 5%. The experimental data fitted both the Freundlich and Langmuir adsorption equations well. The adsorption thermodynamics for alginate onto modified clays suggests that alginate adsorption is a spontaneous process. The adsorption of alginate onto modified clays was highly dependent on pH, with a decrease in adsorption observed with increased pH to 9.48, but the opposite was true above pH 9.48. Finally, adsorption increased with increasing ionic strength.展开更多
基金Supported by the National Natural Science Foundation of China for Young Scholars(No.40906055)the National Natural Science Foundation of China for Creative Research Groups(No.41121064)the National Basic Research Programof China (973 Program) (No.2010CB428706)
文摘Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding of the mechanisms and factors affecting the adsorption of AOMs onto modified clays. Sodium alginate (polysaccharide) and kaolinite modified with polyaluminium chloride (PAC1) were used as AOMs and modified clay model substances, respectively, and the effects of modifier dosage, contact time, solution pH and ionic strength were investigated through batch adsorption experiments. Kinetics revealed that the alginate adsorption rate was described well by a pseudo-second order model. PACl effectively enhanced the adsorption capacity of kaolinite and increased the adsorption rate, and the optimum additive amount of PACl was 5%. The experimental data fitted both the Freundlich and Langmuir adsorption equations well. The adsorption thermodynamics for alginate onto modified clays suggests that alginate adsorption is a spontaneous process. The adsorption of alginate onto modified clays was highly dependent on pH, with a decrease in adsorption observed with increased pH to 9.48, but the opposite was true above pH 9.48. Finally, adsorption increased with increasing ionic strength.