In the meizoseismal areas hit by the China Wenchuan earthquake on May 12, 2008, the disasterprone environment has changed dramatically, making the susceptibility assessment of debris flow more complex and uncertain. A...In the meizoseismal areas hit by the China Wenchuan earthquake on May 12, 2008, the disasterprone environment has changed dramatically, making the susceptibility assessment of debris flow more complex and uncertain. After the earthquake, debris flow hazards occurred frequently and effective susceptibility assessment of debris flow has become extremely important. Shenxi gully in Du Jiangyan city, located in the meizoseismal areas, was selected as the study area. Based on the research of disaster-prone environment and the main factors controlling debris flow, the susceptibility zonations of debris flow were mapped using factor weight method(FW), certainty coefficient method(CF) and geomorphic information entropy method(GI). Through comparative analysis, the study showed that these three methods underestimated susceptible degree of debris flow when used in the meizoseismal areas of Wenchuan earthquake. In order to solve this problem, this paper developed a modified certainty coefficient method(M-CF) to reflect the impact of rich loose materials on the susceptible degree of debris flow. In the modified method, the distribution and area of loose materials were obtained by field investigations and postearthquake remote sensing image, and four data sets, namely, lithology, elevation, slop and aspect, wereused to calculate the CF values. The result of M-CF method is in agreement with field investigations and the accuracy of the method is satisfied. The method has a wide application to the susceptibility assessment of debris flow in the earthquake stricken areas.展开更多
This paper analyses and compares the property of the Modified Bayesian Directional spectrum analysis Method (MBDM) and the Modified Maximum Lkelihood Method (MMLM) that can he used to estimate directional spectrum...This paper analyses and compares the property of the Modified Bayesian Directional spectrum analysis Method (MBDM) and the Modified Maximum Lkelihood Method (MMLM) that can he used to estimate directional spectrum and reflected coefficient of phase-locked wave field overlapped by multi directional irregular incident and reflected waves. The numerical test verifies the results under different wave conditions, different measurement systems, and different reflection features. The computation speed and stability of the two methods is also compared. The analysis addresses that the MBDM is better than the MMLM for directional spectrum estimating, while the MMLM is better than the MBDM for reflected coefficient estimation and calculating speed and stability.展开更多
基金Financial support was provided by Ministry of Water Resources welfare industry funding(Grant No.201301058)Key Laboratory of Mountain Hazards and Earth Surface Processes independent project funding:Dynamic process and buried risk of debris flow in Shenxi gully after Wenchuan earthquakethe international cooperation project of Ministry of Science and Technology(Grant No.2013DFA21720)
文摘In the meizoseismal areas hit by the China Wenchuan earthquake on May 12, 2008, the disasterprone environment has changed dramatically, making the susceptibility assessment of debris flow more complex and uncertain. After the earthquake, debris flow hazards occurred frequently and effective susceptibility assessment of debris flow has become extremely important. Shenxi gully in Du Jiangyan city, located in the meizoseismal areas, was selected as the study area. Based on the research of disaster-prone environment and the main factors controlling debris flow, the susceptibility zonations of debris flow were mapped using factor weight method(FW), certainty coefficient method(CF) and geomorphic information entropy method(GI). Through comparative analysis, the study showed that these three methods underestimated susceptible degree of debris flow when used in the meizoseismal areas of Wenchuan earthquake. In order to solve this problem, this paper developed a modified certainty coefficient method(M-CF) to reflect the impact of rich loose materials on the susceptible degree of debris flow. In the modified method, the distribution and area of loose materials were obtained by field investigations and postearthquake remote sensing image, and four data sets, namely, lithology, elevation, slop and aspect, wereused to calculate the CF values. The result of M-CF method is in agreement with field investigations and the accuracy of the method is satisfied. The method has a wide application to the susceptibility assessment of debris flow in the earthquake stricken areas.
文摘This paper analyses and compares the property of the Modified Bayesian Directional spectrum analysis Method (MBDM) and the Modified Maximum Lkelihood Method (MMLM) that can he used to estimate directional spectrum and reflected coefficient of phase-locked wave field overlapped by multi directional irregular incident and reflected waves. The numerical test verifies the results under different wave conditions, different measurement systems, and different reflection features. The computation speed and stability of the two methods is also compared. The analysis addresses that the MBDM is better than the MMLM for directional spectrum estimating, while the MMLM is better than the MBDM for reflected coefficient estimation and calculating speed and stability.