The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo...The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.展开更多
It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF...It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.展开更多
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper...In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.展开更多
Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformati...Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.展开更多
The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be le...The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.展开更多
A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a grap...A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.展开更多
In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear ela...In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51874183 and 51874182)the National Key Research and Development Program of China (Grant No. 2018YFC0809300)。
文摘The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.
基金Supported by the National Natural Science Foundation of China(61350010)
文摘It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan (463855/7)
文摘In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.
基金supported by the National Research Foundation of Korea (NRF) granted by the Korea government [2014R1A2A2A01005903]Priority Research Centers Program (2010-0020089)support from a grant [R0003356] (Tuning Professional Support Center in Daegu Metropolitan City) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)
文摘Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.
基金Supported by the Natural Science Foundation of Hebei Province (Grant No. E2012201057) the Scientific and Technological Projects of Hebei Province (Grant No. 2009056) the Natural Science Foundation of Tianjin (Grant No. 10JCYBJC03700)
文摘The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 107.02-2019.300.
文摘A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.
文摘In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.