期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modified possibilistic clustering model based on kernel methods
1
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
下载PDF
基于快速聚类索引的图像检索系统 被引量:6
2
作者 张培珍 付平 +1 位作者 肖军 汤旭慧 《吉林大学学报(信息科学版)》 CAS 2004年第6期638-642,共5页
为了提高基于内容的图像检索系统的检索速度,提出了一个基于快速聚类索引的图像检索算法,并将其应用于视频新闻检索系统中。该算法采用Fastmap算法实现图像高维特征向量降维,并用改进后的模糊C均值聚类算法对降维后的图像进行聚类,生成... 为了提高基于内容的图像检索系统的检索速度,提出了一个基于快速聚类索引的图像检索算法,并将其应用于视频新闻检索系统中。该算法采用Fastmap算法实现图像高维特征向量降维,并用改进后的模糊C均值聚类算法对降维后的图像进行聚类,生成图像索引。该算法用于图像检索,检索时间不会随着图像数据库中图像数量、特征向量维数的增加而增加,极大地提高了系统的检索效率,有效地解决了聚类中心初试值的选取问题。同时利用该算法构成的系统还具有动态删除、分裂、合并、插入等功能。实验结果表明,与顺序扫描算法相比,该系统不仅大大提高了检索速度,而且在图像数目和特征向量空间维数增大的条件下,仍能够获得良好的检索性能。 展开更多
关键词 聚类 图像检索算法 图像索引 降维 图像检索系统 检索速度 基于内容的图像检索 检索效率 新闻 检索性能
下载PDF
基于聚类的图像检索 被引量:7
3
作者 张培珍 付萍 肖军 《计算机工程与应用》 CSCD 北大核心 2004年第31期46-48,共3页
如何构建有效的组织和索引、提高图像检索速度是基于内容的图像检索所需解决的关键问题之一。论文采用了一种基于改进的模糊C均值算法的聚类索引。实验表明:该方法应用于图像检索,在准确性和实时性方面均能达到较好的效果,并优于已有的... 如何构建有效的组织和索引、提高图像检索速度是基于内容的图像检索所需解决的关键问题之一。论文采用了一种基于改进的模糊C均值算法的聚类索引。实验表明:该方法应用于图像检索,在准确性和实时性方面均能达到较好的效果,并优于已有的模糊C均值聚类算法。另外,系统实现了基于多特征结合的方法进行检索,并利用基于相关反馈的权重调整方法进一步提高检索性能,使检索结果更加符合用户的视觉效果。 展开更多
关键词 基于内容的图像检索 聚类索引 改进的模糊C均值聚类(mfcmc) 权重
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部