期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
1
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
下载PDF
基于改进多目标蜉蝣算法的配网电池储能系统最优选址定容 被引量:13
2
作者 安东 杨德宇 +4 位作者 武文丽 蔡文超 李赫 杨博 韩一鸣 《电力系统保护与控制》 EI CSCD 北大核心 2022年第10期31-39,共9页
电池储能系统(BESSs)在配电网的选址定容是保证BESSs和配电网经济可靠运行的关键。基于此,提出了一种配电网BESSs最优选址定容方法。首先,采用C-均值聚类算法对全年的负荷曲线和风、光出力曲线进行典型日聚类。进而,以BESSs日均综合成... 电池储能系统(BESSs)在配电网的选址定容是保证BESSs和配电网经济可靠运行的关键。基于此,提出了一种配电网BESSs最优选址定容方法。首先,采用C-均值聚类算法对全年的负荷曲线和风、光出力曲线进行典型日聚类。进而,以BESSs日均综合成本、电压波动和负荷波动最小为目标,建立了配电网BESSs最优选址定容的多目标优化模型。为获得BESSs等决策变量的Pareto最优解集,设计了改进的多目标蜉蝣算法(MMOMA)进行求解。为实现三个目标的最佳权衡,采用改进理想点决策(IIPBD)方法对Pareto最优解集进行折中决策。最后,利用扩展的IEEE33节点配电系统进行仿真测试,以验证所提方法的有效性。仿真结果表明,与另外两种传统多目标优化算法相比:所提MMOMA获得的Pareto前沿分布更广、更均匀;IIPBD方法获得的折中决策方案有效实现了BESSs投资成本的最小化,同时能显著降低配电网的电压波动和负荷波动。 展开更多
关键词 电池储能系统 最优选址定容 Pareto多目标优化 改进多目标蜉蝣算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部