Objective:To study the mechanism of action and therapeutic effect of modified Qiwei Baishu powder in diabetic patients.Methods:From January 2021 to January 2022,80 diabetic patients were recruited in our study and div...Objective:To study the mechanism of action and therapeutic effect of modified Qiwei Baishu powder in diabetic patients.Methods:From January 2021 to January 2022,80 diabetic patients were recruited in our study and divided into two groups by the random number table method.Group A was treated with modified Qiwei Baishu powder,whereas group B was treated with western medicine.The therapeutic effect,traditional Chinese medicine(TCM)syndrome score,blood sugar level,and incidence of adverse reaction were compared between the two groups.Result:The therapeutic effect in group A was significantly higher than that in group B(P<0.05);the TCM syndrome scores of group A were significantly lower than those of group B(P<0.05);the fasting blood glucose(FBG),2 hour-postprandial blood glucose(PBG),and glycosylated hemoglobin(HbA1c)levels of group A were significantly lower than those of group B(P<0.05);the incidence of adverse reaction in group A was significantly lower than that in group B(P<0.05).Conclusion:On the basis of western medicine,the addition of modified Qiwei Baishu powder can maintain stable blood sugar levels in patients and alleviate diabetic symptoms;thus,it is not only effective,but also safe for clinical use in diabetes.展开更多
In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, ...In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.展开更多
This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared ...This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared by sol-gel method and then used in cement mortar.The structures and properties of them were studied.It is shown that the nano Si-O-Si network is generated in TRP and ATRP networks and the hydrophilic group is grafted on the surface of ATRP.The mechanical properties of rubber-treated mortar(RTM) were tested and the microstructures of them were also studied.Compared to the mortars with unmodified rubber powders(RP),NaOH treated rubber powder(SRP) and coupling agent treated rubber powder(CRP),the RTM with ATRP has the highest compressive strength and flexural strength.The stress-strain curves shown that the peak of stress of RTM with ATRP is increased and indicated the higher compression deformation and toughness.It is found that the interfacial adhesion between the ATRP and cement mortar is increased distinctly by SEM,which results in enhanced ductility and mechanical properties of RTM with ATRP.展开更多
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. ...OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. METHODS: A total of 60 diarrhea patients with deficiency and cold syndrome were randomly divided into observation group and control group, with 30 cases in each group. The control group was treated with conventional western medicine. The observation group was given the treatment of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the basis of the same treatment for 4 weeks. The clinical symptoms, fecal flora and immunoglobulin content of the 2 groups were observed and the clinical efficacy was evaluated. RESULTS: After treatment, the symptoms scores of fecal diarrhea, aversion to cold, cold limbs, loss of appetite, cold and painful waist and knee, abdominal fullness, abdominal distension and abdominal pain, and intestinal bacilli contents were significantly decreased(P < 0.05). The contents of lactobacillus, bifidus bacilli, IgG, IgM and IgA were significantly increased(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The total effective rate after treatment in the observation group was 93.3%, which was significantly higher than 73.3% of the control group(P < 0.05). CONCLUSION: The treatment of diarrhea patients with deficiency and cold syndrome with Zhenren Yangzang Decoction and modified Shenling Baizhu Powder can effectively improve the intestinal micro-ecological environment, improve the immune function of patients and promote the rapid recovery of patients.展开更多
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
The powdered coal ash (PCA) was classified, then the ash particle (- 45μm) was modified by a surface active agent and obtained modified powder coal ash (MPCA). The character of the MPC was investigated, when it was u...The powdered coal ash (PCA) was classified, then the ash particle (- 45μm) was modified by a surface active agent and obtained modified powder coal ash (MPCA). The character of the MPC was investigated, when it was used as a new type reinforced filler of rubber.The results show that MPCA can replace or party replace carbon black or silica as reinforced fillers of rubbers.展开更多
Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM)...Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns indicate that the ultra fine Mn-Zn ferrite exhibits a spinel crystal structure. SEM images show that the powder fired at 900℃for 2 h has an average diameter of 60 ~ 90 nm. The particle size becomes larger with the increasing of calcined temperature and the distribution of particle becomes even more homogeneous. Sintering behaviors of synthesized ferrite powders depend on the powder characteristics and high temperatures have induced the good crystallization of particles.展开更多
Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4....Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.展开更多
A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphol...A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphology was observed using scanning electron microscopy (SEM), and the electrochemical properties were investigated by electrochemical impedance spectroscopy (EIS). Immersion test and neutral salt spray test were also conducted to investigate the corrosion resistance of the coating. It is demonstrated that the critical pigment volume content (CPVC) value is between 30% and 40%. The coating with PVC of 30% exhibits good corrosion resistance in 3.5% (mass fraction) NaCl solution.展开更多
Based on an analysis of the validity of the powder compaction equation of Kawakita,a modified compaction equation is proposed.It is shown by the statistical analysis on the experimental compaction data of various powd...Based on an analysis of the validity of the powder compaction equation of Kawakita,a modified compaction equation is proposed.It is shown by the statistical analysis on the experimental compaction data of various powders that in most cases the proposed equation provides a better description of the compaction data than Kawakita's equation,especially in the cases of the compaction of hard material powders.展开更多
The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled...The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.展开更多
文摘Objective:To study the mechanism of action and therapeutic effect of modified Qiwei Baishu powder in diabetic patients.Methods:From January 2021 to January 2022,80 diabetic patients were recruited in our study and divided into two groups by the random number table method.Group A was treated with modified Qiwei Baishu powder,whereas group B was treated with western medicine.The therapeutic effect,traditional Chinese medicine(TCM)syndrome score,blood sugar level,and incidence of adverse reaction were compared between the two groups.Result:The therapeutic effect in group A was significantly higher than that in group B(P<0.05);the TCM syndrome scores of group A were significantly lower than those of group B(P<0.05);the fasting blood glucose(FBG),2 hour-postprandial blood glucose(PBG),and glycosylated hemoglobin(HbA1c)levels of group A were significantly lower than those of group B(P<0.05);the incidence of adverse reaction in group A was significantly lower than that in group B(P<0.05).Conclusion:On the basis of western medicine,the addition of modified Qiwei Baishu powder can maintain stable blood sugar levels in patients and alleviate diabetic symptoms;thus,it is not only effective,but also safe for clinical use in diabetes.
基金financially supported by the National Natural Science Foundation of China(grant no.51204028)
文摘In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.
文摘This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared by sol-gel method and then used in cement mortar.The structures and properties of them were studied.It is shown that the nano Si-O-Si network is generated in TRP and ATRP networks and the hydrophilic group is grafted on the surface of ATRP.The mechanical properties of rubber-treated mortar(RTM) were tested and the microstructures of them were also studied.Compared to the mortars with unmodified rubber powders(RP),NaOH treated rubber powder(SRP) and coupling agent treated rubber powder(CRP),the RTM with ATRP has the highest compressive strength and flexural strength.The stress-strain curves shown that the peak of stress of RTM with ATRP is increased and indicated the higher compression deformation and toughness.It is found that the interfacial adhesion between the ATRP and cement mortar is increased distinctly by SEM,which results in enhanced ductility and mechanical properties of RTM with ATRP.
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
文摘OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. METHODS: A total of 60 diarrhea patients with deficiency and cold syndrome were randomly divided into observation group and control group, with 30 cases in each group. The control group was treated with conventional western medicine. The observation group was given the treatment of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the basis of the same treatment for 4 weeks. The clinical symptoms, fecal flora and immunoglobulin content of the 2 groups were observed and the clinical efficacy was evaluated. RESULTS: After treatment, the symptoms scores of fecal diarrhea, aversion to cold, cold limbs, loss of appetite, cold and painful waist and knee, abdominal fullness, abdominal distension and abdominal pain, and intestinal bacilli contents were significantly decreased(P < 0.05). The contents of lactobacillus, bifidus bacilli, IgG, IgM and IgA were significantly increased(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The total effective rate after treatment in the observation group was 93.3%, which was significantly higher than 73.3% of the control group(P < 0.05). CONCLUSION: The treatment of diarrhea patients with deficiency and cold syndrome with Zhenren Yangzang Decoction and modified Shenling Baizhu Powder can effectively improve the intestinal micro-ecological environment, improve the immune function of patients and promote the rapid recovery of patients.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
文摘The powdered coal ash (PCA) was classified, then the ash particle (- 45μm) was modified by a surface active agent and obtained modified powder coal ash (MPCA). The character of the MPC was investigated, when it was used as a new type reinforced filler of rubber.The results show that MPCA can replace or party replace carbon black or silica as reinforced fillers of rubbers.
基金Project supported by the Fund for Harbin Young Scholars (2005AFQXJ031)
文摘Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns indicate that the ultra fine Mn-Zn ferrite exhibits a spinel crystal structure. SEM images show that the powder fired at 900℃for 2 h has an average diameter of 60 ~ 90 nm. The particle size becomes larger with the increasing of calcined temperature and the distribution of particle becomes even more homogeneous. Sintering behaviors of synthesized ferrite powders depend on the powder characteristics and high temperatures have induced the good crystallization of particles.
基金supported in part by the National Centre of Analysis and Testing for Nonferrous Metal & Electronic Material for Elementary Analysis, Beijing, China
文摘Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.
基金Project(51001007) supported by the National Natural Science Foundation of ChinaProject(2011ZE51057) supported by the Aero Science Foundation of China
文摘A novel kind of waterborne epoxy coating pigmented by nano-sized aluminium powders on high strength steel was formulated. Several coatings with different pigment volume content (PVC) were prepared. The coating morphology was observed using scanning electron microscopy (SEM), and the electrochemical properties were investigated by electrochemical impedance spectroscopy (EIS). Immersion test and neutral salt spray test were also conducted to investigate the corrosion resistance of the coating. It is demonstrated that the critical pigment volume content (CPVC) value is between 30% and 40%. The coating with PVC of 30% exhibits good corrosion resistance in 3.5% (mass fraction) NaCl solution.
文摘Based on an analysis of the validity of the powder compaction equation of Kawakita,a modified compaction equation is proposed.It is shown by the statistical analysis on the experimental compaction data of various powders that in most cases the proposed equation provides a better description of the compaction data than Kawakita's equation,especially in the cases of the compaction of hard material powders.
基金The authors are grateful to the National Natural Science Foundation of China for financial support for this work.
文摘The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.