This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving...A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.展开更多
Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ...Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.展开更多
A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the lin...A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the linear combination of two particular solutions of the black hole wavefunction is not physical although each of them is physical, if we think that the quantum gravity should reduce into its corresponding classical counterpart in which the gravity vanishes. It seems to confirm the argument, given by Alwis and MacIntire, that a possible resolution on the quantum gravity is to give up the superposition principle.展开更多
Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures...Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures which are preserved. We apply the resulting construction to convert the BTZ black hole metric to ITQG framework. We then modify the BTZ black hole in order to investigate the existence of the P-V criticality in ITQG theory.展开更多
Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone ru...Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone rubber were measured. The influences of the modifiers on the properties of white carbon black and the mechanical properties of silicone rubber were discussed.展开更多
Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravi...Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravity requires a modification or extension if no dark matter component is introduced in the description of gravitational phenomena. The result is directly obtained with the assumption that a fundamental constant of nature with dimensions of acceleration needs to be introduced into gravitational interactions. This in turn allows for modifications or extensions of the equipartion law and/or the holographic principle. In other words, MOND-like phenomenology can be reproduced when appropriate generalised concepts at the thermodynamical level of space and/or at the holographic principle are introduced. Thermodynamical modifications are reflected in extensions to the equipartition law which occur when the temperature of the system drops below a critical value, equals to Unruh’s temperature evaluated at the acceleration constant scale introduced for the description of the gravitational phenomena. Our calculations extend the ones by [1] in which Newtonian gravity is shown to be an emergent phenomenon, and together with it reinforces the idea that gravity at all scales is emergent.展开更多
The effect of nano-carbon black content(O,8 and 12 wt.%)on the wettability of molten steel on Al_(2)O_(3)-C substrates was investigated by the sessile drop wetting method at 1500℃ under argon atmosphere.At the beginn...The effect of nano-carbon black content(O,8 and 12 wt.%)on the wettability of molten steel on Al_(2)O_(3)-C substrates was investigated by the sessile drop wetting method at 1500℃ under argon atmosphere.At the beginning of the wetting experiment,the contact angle decreased with the increase in nano-carbon black content.As the wetting experiment progressed,FeAl_(2)0_(4) layer and sheet Al_(2)O_(3) layer were found at the interface between the molten steel and the Al_(2)O_(3)-C substrates with O and 8 wt.% nano-carbon black content,and the contact angle deceased with time.When the content of nano-carbon black was 12 wt.%,a large number of nano-Al_(2)O_(3) whiskers were observed,which made the contact angle between the molten steel and Al_(2)O_(3)-C substrate become large.Based on the scanning electron microscope and energy dispersive spectrometry results,the formation mechanism of FeAl2O4 layer and Al_(2)O_(3) layer and the interfacial reaction mechanism were proposed.展开更多
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
基金supported by the National Key R&D Program of China(2018YFA0702400)National Natural Science Foundation of China(5207040347).
文摘A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.
文摘Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.
基金supported by the Science Paper Foundation of Beijing Jiaotong University of China
文摘A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the linear combination of two particular solutions of the black hole wavefunction is not physical although each of them is physical, if we think that the quantum gravity should reduce into its corresponding classical counterpart in which the gravity vanishes. It seems to confirm the argument, given by Alwis and MacIntire, that a possible resolution on the quantum gravity is to give up the superposition principle.
文摘Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures which are preserved. We apply the resulting construction to convert the BTZ black hole metric to ITQG framework. We then modify the BTZ black hole in order to investigate the existence of the P-V criticality in ITQG theory.
文摘Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone rubber were measured. The influences of the modifiers on the properties of white carbon black and the mechanical properties of silicone rubber were discussed.
文摘Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravity requires a modification or extension if no dark matter component is introduced in the description of gravitational phenomena. The result is directly obtained with the assumption that a fundamental constant of nature with dimensions of acceleration needs to be introduced into gravitational interactions. This in turn allows for modifications or extensions of the equipartion law and/or the holographic principle. In other words, MOND-like phenomenology can be reproduced when appropriate generalised concepts at the thermodynamical level of space and/or at the holographic principle are introduced. Thermodynamical modifications are reflected in extensions to the equipartition law which occur when the temperature of the system drops below a critical value, equals to Unruh’s temperature evaluated at the acceleration constant scale introduced for the description of the gravitational phenomena. Our calculations extend the ones by [1] in which Newtonian gravity is shown to be an emergent phenomenon, and together with it reinforces the idea that gravity at all scales is emergent.
基金This work was funded by the National Natural Science Foundation of China(No.51974214)the Natural Science Funds of Hubei Province for Distinguished Young Scholars(Grant No.2020CFA088).
文摘The effect of nano-carbon black content(O,8 and 12 wt.%)on the wettability of molten steel on Al_(2)O_(3)-C substrates was investigated by the sessile drop wetting method at 1500℃ under argon atmosphere.At the beginning of the wetting experiment,the contact angle decreased with the increase in nano-carbon black content.As the wetting experiment progressed,FeAl_(2)0_(4) layer and sheet Al_(2)O_(3) layer were found at the interface between the molten steel and the Al_(2)O_(3)-C substrates with O and 8 wt.% nano-carbon black content,and the contact angle deceased with time.When the content of nano-carbon black was 12 wt.%,a large number of nano-Al_(2)O_(3) whiskers were observed,which made the contact angle between the molten steel and Al_(2)O_(3)-C substrate become large.Based on the scanning electron microscope and energy dispersive spectrometry results,the formation mechanism of FeAl2O4 layer and Al_(2)O_(3) layer and the interfacial reaction mechanism were proposed.