Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical...Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.展开更多
Genistein, the main isoflavone from soy, and bisphenol A (BPA), a food contaminant, are considered ubiquitous xenoestrogens. Here we investigated the influence of genistein and BPA on estrone (El) metabolism in ra...Genistein, the main isoflavone from soy, and bisphenol A (BPA), a food contaminant, are considered ubiquitous xenoestrogens. Here we investigated the influence of genistein and BPA on estrone (El) metabolism in rat liver microsomes. Both substances inhibited the 2-hydroxylation and 16a-hydroxylation of E1, but in different degrees, thereby reducing the 2-OH-E1/16a-OH-E1 ratio,展开更多
Methane conversions at lower temperature were studied. The aetivity of Y_2O_3 sample at 823K was fairly high with some formation of C_2H_4 and C_2H_6, the catalysts based on alkaline earth oxides and yttria would give...Methane conversions at lower temperature were studied. The aetivity of Y_2O_3 sample at 823K was fairly high with some formation of C_2H_4 and C_2H_6, the catalysts based on alkaline earth oxides and yttria would give better results. The influences of flux ratio, space velocity, and reaction temperature were also discussed.展开更多
Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified dip...Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerize and modify once more. The system was applied in composites. Their properties were investigated and found that they met the requirements as a heat-resisting adhesive.展开更多
Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the sam...Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H 2 O 2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H 2 O 2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H 2 O 2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) SOLV-X (44%) oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H 2 O 2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H 2 O 2 (1470 mmol/L,the mol ratio of H 2 O 2:Fe 2+ was 210:1) than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C 10 –C 40 ) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
Traditional preparation of magnetic microcapsules involves cumbersome processes and often results in irregular-shaped products. Due to the stable laminar flow of reaction solution and the moderate reaction conditions,...Traditional preparation of magnetic microcapsules involves cumbersome processes and often results in irregular-shaped products. Due to the stable laminar flow of reaction solution and the moderate reaction conditions, the T-shaped microchannel (T-MC) reactor is supposed to yield microcapsules with regular shape. In this paper, magnetic particles of ferroferric oxide modified by oleic acid (OA-Fe3O4) and dispersed in tetrachloroethylene were used as core material. Polymethyl methacrylate (PMMA) was used as shell material. Magnetic microcapsules were prepared by using a T-MC reactor. Factors that influenced the encapsulated reaction were investigated in details, which included the velocity ratio of aqueous phase to oil phase, the length and the inner diameter of the microchannel. The morphology, composition, and magnetic responsiveness of the magnetic microcapsules were analyzed and characterized by SEM, FTIR, XRD, TGA, and vibrating sample magnetometer (VSM). The results confirmed that magnetic microcapsules prepared by T-MC reactor were regular in shape.展开更多
Protective effects of API0134 on endotheliai cells (EC) damaged by oxidatively modified low density lipoprotein (oxLDL) were studied. The results showed that the content of endothelia (ET) and malondialdehyde (MDA) in...Protective effects of API0134 on endotheliai cells (EC) damaged by oxidatively modified low density lipoprotein (oxLDL) were studied. The results showed that the content of endothelia (ET) and malondialdehyde (MDA) in the media of porcine aortic EC incubated with oxLDL were increased and the cGMP was decreased significantly, and the activity of superoxide dismutase (SOD) was inhibited. The effect of cytotoxicity of oxLDL can be eliminated by API0134.These results suggest that API0134 may protect EC against damages elicited by oxLDL.展开更多
Silver vanadates are promising visible-light-responded photocatalysts with suitable bandgap for solar absorption.However,the easy recombination of photogenerated carriers limits their performance.To overcome this obst...Silver vanadates are promising visible-light-responded photocatalysts with suitable bandgap for solar absorption.However,the easy recombination of photogenerated carriers limits their performance.To overcome this obstacle,a novel 2D graphene oxide(GO)modifiedα-AgVO_(3) nanorods(GO/α-AgVO_(3) )photocatalyst was designed herein to improve the separation of photocarriers.The GO/α-AgVO_(3) was fabricated through a facile in-situ coprecipitation method at room temperature.It was found that the as-prepared 0.5 wt%GO/α-AgVO_(3) exhibited the most excellent performance for rhodamine B(RhB)decomposition,with an apparent reaction rate constant 18 times higher than that of pureα-AgVO_(3) under visible-light irradiation.In light of the first-principles calculations and the hetero junction analysis,the mechanism underpinned the enhanced photocatalytic performance was proposed.The enhanced photocatalytic performance was ascribed to the appropriate bandgap ofα-AgVO_(3) nanorods for visible-light response and efficient separation of photocarriers through GO nanosheets.This work demonstrates the feasibility of overcoming the easy recombination of photogenerated carriers and provides a valuable GO/α-AgVO_(3) photocatalyst for pollutant degradation.展开更多
The doping dependence of dry thermal oxidation rates in n-type 6H-SiC was studied. The oxidation temperature ranged from 1050 to 1150℃ and the nitrogen doping concentration ranged from 9.53× 10^16, 1.44× 10...The doping dependence of dry thermal oxidation rates in n-type 6H-SiC was studied. The oxidation temperature ranged from 1050 to 1150℃ and the nitrogen doping concentration ranged from 9.53× 10^16, 1.44× 10^17, to 2.68×10^18 cm ^3. By combining the modified deal-grove model and Arrhenius equation, the linear and parabolic rate constants, and their corresponding activation energies were extracted. The results show that: higher temperature corresponded to thicker oxides; dry thermal oxidation rate in n-type 6H-SiC depended on the doping concentration; both linear-rate-constant and parabolic-rate-constant increased with the doping concentration; the parabolic activation energy increased from 0.082 to 0.104 e V, both linear and parabolic activation energies increasing with the doping concentration; and, the parabolic pre-exponential factor increased from 2.6 ×10^4 to 2.7 ×10^5nm^2/s, both linear and parabolic pre-exponential factor increasing with doping concentration. Moreover, the experiment also illustrated that it is unreasonable to use a variation of the Arrhenius activation energy to explain the doping dependence of thermal oxidation on SiC.展开更多
Magnetically responsive composite materials have been used in interesting applications in various areas of bioscience, biotechnology, and environmental technology. In this work, a simple method to determine the amount...Magnetically responsive composite materials have been used in interesting applications in various areas of bioscience, biotechnology, and environmental technology. In this work, a simple method to determine the amount of magnetic iron oxide nano- and microparticles attached to magnetically-modified partic- ulate diamagnetic materials has been developed using a commercially available magnetic permeability meter, The procedure is fast and enables dry particulate magnetically modified materials to be analysed without any modification or pretreatment. We show that the magnetic permeability can be measured for materials containing up to 20% magnetic iron oxide, The magnetic permeability measurements are highly reproducible.展开更多
Combined chemical analyses and biological measurements were utilized to investigate potential toxicological effects and possible mechanisms involved in risk assessment of rare earth elements (REEs) on Viciafaba L. s...Combined chemical analyses and biological measurements were utilized to investigate potential toxicological effects and possible mechanisms involved in risk assessment of rare earth elements (REEs) on Viciafaba L. seedlings, which were hydroponically cultivated and exposed to various concentrations of lanthanum (La) for 15 days. The results showed that La contents in both the solution and roots increased with the increase of extraneous La, contributing to hormetic dose responses of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and endoprotease (EP) isozymes activities, and HSP 70 production enhanced at low doses but suppressed at higher doses of La. These physiological responses constituted antioxidant and detoxification systems against La-induced oxidative stress. The elevated La levels also contributed to oxidatively modified proteins, which were most responsible for subsequent cell death and growth retardation of the roots. By combination of hormetic and traditional threshold dose levels, the threshold dose range was deduced to be 108-195 μg La/g dry weight in the roots, corresponding to 0.90-3.12 mg/L of soluble La in the culture solution. It suggests that persistent applications of REEs may lead to potential ecological risk in the environment.展开更多
The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipid...The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type (WT) plants. The expression of genes involved in oxylipin production was also higher in the pPLAIlec-deficient mutant than in WT plants. The mutant plants lost water more quickly than WT plants. The stomata of WT and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and WT leaves produced abscisic acid at the same rate, but, after 4 h of desiccation, the jasmonic acid level was much higher in mutant than WT leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes.展开更多
Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometri...Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometric shapes were evaluated in a novel oil‐in‐water system:spherical fullerenes(C60,0D),tubular multi‐walled carbon nanotubes(MWCNT,1D),sheet graphene oxide(GO,2D),sheet graphene oxide derivative(Oct‐O‐GO,2D),and lamellar graphite(G,3D).Among these,GO with two types of oxidation degrees,i.e.,GO(1),GO(2),and Oct‐O‐GO(1)were synthesized and characterized using Fourier‐transform infrared spectroscopy,Raman spectroscopy,x‐ray diffraction,thermogravimetric analysis,scanning electron microscopy,and contact angle measurements.The load‐carrying capacity of the NCM emulsions were evaluated using a four‐ball test machine,and the lubrication performances were investigated using a high‐frequency reciprocating friction and wear tester with a sliding distance of 1,800 mm under different loads(50 N and 100 N)at 0.5 Hz.The results revealed that the Oct‐O‐GO(1)emulsion exhibited the best load‐carrying capacity,and the best friction‐reducing and anti‐wear properties compared to other emulsions.Moreover,the anti‐wear advantage was more prominent under high load conditions,whereas the other emulsions exhibited a certain degree of abrasive or adhesive wear.The lubrication mechanism was determined through the analysis of worn surfaces using scanning electron microscopy/energy‐dispersive x‐ray spectroscopy,micro‐Raman spectroscopy,and x‐ray photoelectron spectroscopy.The results revealed that during frictional sliding,the ingredients in the emulsion can absorb and react with the freshly exposed metal surface to form surface‐active films to protect the surfaces from abrasion.Moreover,it was found that the higher the amount of ingredients that contain alkyl and O‐H/C=O,the better was the lubrication performance in addition to an increase in the carbon residue in the tribofilm generated on the meal surface.展开更多
A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets ...A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets were vacuum-assistant assembled onto porous electrospun polyacrylonitrile(PAN)nanofibrous substrate to achieve a smooth,hydrophilic and compact PEI-GO intermediate layer.The introduction of PEI chains endowed GO interlayer with sufficient interaction for bonding adjacent GO nanosheets to enhance stability in water/isopropanol mixture and also with the ascended inter-lamellar space to improve the water-sorption ability due to the abundant active amino groups.Benefiting from PEI-GO layer,a defect-free sodium alginate(SA)skin layer could be facilely manufactured with elaborately controlled thickness as thin as possible in order to reduce mass transfer resistant and enhance permeability maximally.Meanwhile,the interlayer would also contribute to enhance interfacial adhesion to promote the structure integrity of three-tier thin-film nanofibrous composite(TFNC)membrane in pervaporation dehydration process.After fine-tuning of membrane preparation process,the SA/PEI(75)-GO-60/PAN TFNC membrane exhibited competitive pervaporation performance with the permeate flux of 2009 g/m2 h and the separation factor of 1276 operated at 70°C for dehydration of 90 wt%isopropanol solution.The unique three-tier composite membrane structure suggested an effective and facile approach to design novel membrane structure for further improvement of pervaporation performance.展开更多
基金funded by the National Natural Science Foundation of China(No.51872137)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.
基金supported by a POSDRU grantNo.159/1.5/S/136893 grant with title:‘Parteneriat strategic pentru crecterea calitarii cercetarii stiintifice din universitatile medicale prin acordarea de burse doctorale?i postdoctorale-Doc Med.Net_2.0’
文摘Genistein, the main isoflavone from soy, and bisphenol A (BPA), a food contaminant, are considered ubiquitous xenoestrogens. Here we investigated the influence of genistein and BPA on estrone (El) metabolism in rat liver microsomes. Both substances inhibited the 2-hydroxylation and 16a-hydroxylation of E1, but in different degrees, thereby reducing the 2-OH-E1/16a-OH-E1 ratio,
文摘Methane conversions at lower temperature were studied. The aetivity of Y_2O_3 sample at 823K was fairly high with some formation of C_2H_4 and C_2H_6, the catalysts based on alkaline earth oxides and yttria would give better results. The influences of flux ratio, space velocity, and reaction temperature were also discussed.
文摘Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants. And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerize and modify once more. The system was applied in composites. Their properties were investigated and found that they met the requirements as a heat-resisting adhesive.
基金supported by the Program of In-ternational S&T Cooperation(No.2010 DFA 94550,2010KW-24-1)the National Natural Science Founda-tion of China(No.50830303)+1 种基金the Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07317-007-001)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0853)
文摘Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H 2 O 2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H 2 O 2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H 2 O 2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) SOLV-X (44%) oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H 2 O 2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H 2 O 2 (1470 mmol/L,the mol ratio of H 2 O 2:Fe 2+ was 210:1) than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C 10 –C 40 ) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Fundamental Research Funds for the Central Universities,China(No.2011D10543,No.2013D110525)
文摘Traditional preparation of magnetic microcapsules involves cumbersome processes and often results in irregular-shaped products. Due to the stable laminar flow of reaction solution and the moderate reaction conditions, the T-shaped microchannel (T-MC) reactor is supposed to yield microcapsules with regular shape. In this paper, magnetic particles of ferroferric oxide modified by oleic acid (OA-Fe3O4) and dispersed in tetrachloroethylene were used as core material. Polymethyl methacrylate (PMMA) was used as shell material. Magnetic microcapsules were prepared by using a T-MC reactor. Factors that influenced the encapsulated reaction were investigated in details, which included the velocity ratio of aqueous phase to oil phase, the length and the inner diameter of the microchannel. The morphology, composition, and magnetic responsiveness of the magnetic microcapsules were analyzed and characterized by SEM, FTIR, XRD, TGA, and vibrating sample magnetometer (VSM). The results confirmed that magnetic microcapsules prepared by T-MC reactor were regular in shape.
文摘Protective effects of API0134 on endotheliai cells (EC) damaged by oxidatively modified low density lipoprotein (oxLDL) were studied. The results showed that the content of endothelia (ET) and malondialdehyde (MDA) in the media of porcine aortic EC incubated with oxLDL were increased and the cGMP was decreased significantly, and the activity of superoxide dismutase (SOD) was inhibited. The effect of cytotoxicity of oxLDL can be eliminated by API0134.These results suggest that API0134 may protect EC against damages elicited by oxLDL.
基金This work was financially supported by the National Natural Science Foundation of China(No.52102068)the Key Laboratory Foundation of the Science and Technology on Advanced Functional Composite Laboratory(No.6142906200509)+2 种基金the Natural Science Foundation of Jiangsu Province(No.20KJB430017)NUPTSF(No.NY219162)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_0789).
文摘Silver vanadates are promising visible-light-responded photocatalysts with suitable bandgap for solar absorption.However,the easy recombination of photogenerated carriers limits their performance.To overcome this obstacle,a novel 2D graphene oxide(GO)modifiedα-AgVO_(3) nanorods(GO/α-AgVO_(3) )photocatalyst was designed herein to improve the separation of photocarriers.The GO/α-AgVO_(3) was fabricated through a facile in-situ coprecipitation method at room temperature.It was found that the as-prepared 0.5 wt%GO/α-AgVO_(3) exhibited the most excellent performance for rhodamine B(RhB)decomposition,with an apparent reaction rate constant 18 times higher than that of pureα-AgVO_(3) under visible-light irradiation.In light of the first-principles calculations and the hetero junction analysis,the mechanism underpinned the enhanced photocatalytic performance was proposed.The enhanced photocatalytic performance was ascribed to the appropriate bandgap ofα-AgVO_(3) nanorods for visible-light response and efficient separation of photocarriers through GO nanosheets.This work demonstrates the feasibility of overcoming the easy recombination of photogenerated carriers and provides a valuable GO/α-AgVO_(3) photocatalyst for pollutant degradation.
基金Project supported by the National Natural Science Foundation of China(No.F040405)
文摘The doping dependence of dry thermal oxidation rates in n-type 6H-SiC was studied. The oxidation temperature ranged from 1050 to 1150℃ and the nitrogen doping concentration ranged from 9.53× 10^16, 1.44× 10^17, to 2.68×10^18 cm ^3. By combining the modified deal-grove model and Arrhenius equation, the linear and parabolic rate constants, and their corresponding activation energies were extracted. The results show that: higher temperature corresponded to thicker oxides; dry thermal oxidation rate in n-type 6H-SiC depended on the doping concentration; both linear-rate-constant and parabolic-rate-constant increased with the doping concentration; the parabolic activation energy increased from 0.082 to 0.104 e V, both linear and parabolic activation energies increasing with the doping concentration; and, the parabolic pre-exponential factor increased from 2.6 ×10^4 to 2.7 ×10^5nm^2/s, both linear and parabolic pre-exponential factor increasing with doping concentration. Moreover, the experiment also illustrated that it is unreasonable to use a variation of the Arrhenius activation energy to explain the doping dependence of thermal oxidation on SiC.
文摘Magnetically responsive composite materials have been used in interesting applications in various areas of bioscience, biotechnology, and environmental technology. In this work, a simple method to determine the amount of magnetic iron oxide nano- and microparticles attached to magnetically-modified partic- ulate diamagnetic materials has been developed using a commercially available magnetic permeability meter, The procedure is fast and enables dry particulate magnetically modified materials to be analysed without any modification or pretreatment. We show that the magnetic permeability can be measured for materials containing up to 20% magnetic iron oxide, The magnetic permeability measurements are highly reproducible.
基金supported by the National Natural Science Foundation of China (No. 20877032)the Foundation of State Key Laboratory of Pollution Control and Resources Reuse of China (No. PCRRF08011)
文摘Combined chemical analyses and biological measurements were utilized to investigate potential toxicological effects and possible mechanisms involved in risk assessment of rare earth elements (REEs) on Viciafaba L. seedlings, which were hydroponically cultivated and exposed to various concentrations of lanthanum (La) for 15 days. The results showed that La contents in both the solution and roots increased with the increase of extraneous La, contributing to hormetic dose responses of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and endoprotease (EP) isozymes activities, and HSP 70 production enhanced at low doses but suppressed at higher doses of La. These physiological responses constituted antioxidant and detoxification systems against La-induced oxidative stress. The elevated La levels also contributed to oxidatively modified proteins, which were most responsible for subsequent cell death and growth retardation of the roots. By combination of hormetic and traditional threshold dose levels, the threshold dose range was deduced to be 108-195 μg La/g dry weight in the roots, corresponding to 0.90-3.12 mg/L of soluble La in the culture solution. It suggests that persistent applications of REEs may lead to potential ecological risk in the environment.
基金This work was supported by grants from the National Science Foundation (MCB-0920681 IOS-0818740) and the US Department of Energy (DE-SC0001295). The Kansas Lipidomics Research Center's research was supported by grants from the National Science Foundation (MCB-0920663, DBI-0521587, and Kansas Experimental Program to Stimulate Competitive Research Award EPS-0236913), with support from the State of Kansas through the Kansas Technology Enterprise Corporation and Kansas State University, as well from US Public Health Service Grant P20 RR-016475 from the IDeA Network of Biomedical Research Excellence program of the National Center for Research Resources. No conflict of interest declared.
文摘The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type (WT) plants. The expression of genes involved in oxylipin production was also higher in the pPLAIlec-deficient mutant than in WT plants. The mutant plants lost water more quickly than WT plants. The stomata of WT and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and WT leaves produced abscisic acid at the same rate, but, after 4 h of desiccation, the jasmonic acid level was much higher in mutant than WT leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes.
基金the National Natural Science Foundation of China(Nos.21703279,and21506064)Shanghai Natural Science Foundation(No.17ZR1442100)the Shanghai Municipal “Science and Technology Innovation Action Plan” International Cooperation Project(No.15540723600)for financial support
文摘Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometric shapes were evaluated in a novel oil‐in‐water system:spherical fullerenes(C60,0D),tubular multi‐walled carbon nanotubes(MWCNT,1D),sheet graphene oxide(GO,2D),sheet graphene oxide derivative(Oct‐O‐GO,2D),and lamellar graphite(G,3D).Among these,GO with two types of oxidation degrees,i.e.,GO(1),GO(2),and Oct‐O‐GO(1)were synthesized and characterized using Fourier‐transform infrared spectroscopy,Raman spectroscopy,x‐ray diffraction,thermogravimetric analysis,scanning electron microscopy,and contact angle measurements.The load‐carrying capacity of the NCM emulsions were evaluated using a four‐ball test machine,and the lubrication performances were investigated using a high‐frequency reciprocating friction and wear tester with a sliding distance of 1,800 mm under different loads(50 N and 100 N)at 0.5 Hz.The results revealed that the Oct‐O‐GO(1)emulsion exhibited the best load‐carrying capacity,and the best friction‐reducing and anti‐wear properties compared to other emulsions.Moreover,the anti‐wear advantage was more prominent under high load conditions,whereas the other emulsions exhibited a certain degree of abrasive or adhesive wear.The lubrication mechanism was determined through the analysis of worn surfaces using scanning electron microscopy/energy‐dispersive x‐ray spectroscopy,micro‐Raman spectroscopy,and x‐ray photoelectron spectroscopy.The results revealed that during frictional sliding,the ingredients in the emulsion can absorb and react with the freshly exposed metal surface to form surface‐active films to protect the surfaces from abrasion.Moreover,it was found that the higher the amount of ingredients that contain alkyl and O‐H/C=O,the better was the lubrication performance in addition to an increase in the carbon residue in the tribofilm generated on the meal surface.
基金from Natural Science Foundation of Shanghai with Grand No.19ZR1401300Program for Innovative Research Team in University of Ministry of Education of China with Grand No.IRT_16R13.
文摘A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets were vacuum-assistant assembled onto porous electrospun polyacrylonitrile(PAN)nanofibrous substrate to achieve a smooth,hydrophilic and compact PEI-GO intermediate layer.The introduction of PEI chains endowed GO interlayer with sufficient interaction for bonding adjacent GO nanosheets to enhance stability in water/isopropanol mixture and also with the ascended inter-lamellar space to improve the water-sorption ability due to the abundant active amino groups.Benefiting from PEI-GO layer,a defect-free sodium alginate(SA)skin layer could be facilely manufactured with elaborately controlled thickness as thin as possible in order to reduce mass transfer resistant and enhance permeability maximally.Meanwhile,the interlayer would also contribute to enhance interfacial adhesion to promote the structure integrity of three-tier thin-film nanofibrous composite(TFNC)membrane in pervaporation dehydration process.After fine-tuning of membrane preparation process,the SA/PEI(75)-GO-60/PAN TFNC membrane exhibited competitive pervaporation performance with the permeate flux of 2009 g/m2 h and the separation factor of 1276 operated at 70°C for dehydration of 90 wt%isopropanol solution.The unique three-tier composite membrane structure suggested an effective and facile approach to design novel membrane structure for further improvement of pervaporation performance.