With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance an...With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.展开更多
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay...Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.展开更多
Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organ...Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.展开更多
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemic...To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.展开更多
In this paper, modified two-dimensional peri- odic lattice materials with local resonance phononic band gaps are designed and investigated. The design concept is to introduce some auxiliary structures into conventiona...In this paper, modified two-dimensional peri- odic lattice materials with local resonance phononic band gaps are designed and investigated. The design concept is to introduce some auxiliary structures into conventional pe- riodic lattice materials. Elastic wave propagation in this kind of modified two-dimensional lattice materials is studied us- ing a combination of Bloch's theorem with finite element method. The calculated frequency band structures of illus- trative modified square lattice materials reveal the existence of frequency band gaps in the low frequency region due to the introduction of the auxiliary structures. The mechanism underlying the occurrence of these frequency band gaps is thoroughly discussed and natural resonances of the auxiliary structures are validated to be the origin. The effect of geo- metric parameters of the auxiliary structures on the width of the local resonance phononic band gaps is explored. Finally, a conceptual broadband vibration-insulating structure based on the modified lattice materials is designed and its capabil- ity is demonstrated. The present work is anticipated to be useful in designing structures which can insulate mechanical vibrations within desired frequency ranges.展开更多
A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o...A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.展开更多
A new type of capric acid(CA)-acid expanded vermiculite(AEV) composite phase change material(PCM) with improved adsorption ability and interface adhesive strength was developed. Through the analysis of non-isothermal ...A new type of capric acid(CA)-acid expanded vermiculite(AEV) composite phase change material(PCM) with improved adsorption ability and interface adhesive strength was developed. Through the analysis of non-isothermal phase transition kinetics, modified vermiculite was observed to change and affect the phase transformation mechanism of the composite. AEV was treated with hydrochloric acid to improve the specific surface area and micro-pore structure. The surface area measured by BET increased from 81.94 m^2/g for expanded vermiculite(EV) to 544.13 m^2/g for AEV. CA-EV and CA-AEV composite PCMs were prepared by direct impregnation. The non-isothermal phase transition isotherms of CA-EV and CA-AEV were recorded by DSC at different heating rates(1, 5, 10, 15, and 20 ℃/min), which indicated that the phase transition rate increased with the heating rate and the phase transition process changed. Kinetics parameters were analyzed by a double extrapolation method. The activation energy(E) under the original state(E_(α→0)) of CA-AEV and CA-EV was 1 117 kJ/mol and 937 kJ/mol, respectively, and 1 205 kJ/mol and 1 016 kJ/mol under the thermal equilibrium state(E_(β→0)). The most probabilistic mechanism function of CA-AEV satisfied G(α)=α^(2/3), which followed the Mample special rule, and the function of CA-EV satisfied G(α)=[(1+α)^(1/3)-1]~2, which followed the anti-Jander function.展开更多
A self-made 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer and two other commercially available superplasticizers with different molecular structures are used in this stud...A self-made 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer and two other commercially available superplasticizers with different molecular structures are used in this study to investigate the effect of an AMPS-modified polyacrylic acid superplasticizer on the properties of concrete materials. In the experiments, initial and 1.5 h slumps over time after admixtion are determined by adding different dosages of three superplasticizers into the premixed concrete to characterize the slump loss resistance of the premixed concrete. The water-reducing rates of three different types of concrete are determined to characterize the water-reducing capacity of the concrete with each superplasticizer. The 3, 7 and 28 d compressive strength is determined to characterize the mechanical properties of the concrete with each superplasticizer. In the meanwhile, 1, 1.5 and 2.0 h slump loss rates over time after admixtion are determined by adding different dosages of the three superplasticizers into the high-performance concrete (HPC) to characterize the slump loss resistance of HPC. The 7, 28, 60 and 90 d compressive strength is determined to characterize the compressive properties of HPC with each superplasticizer. The dry shrinkage rates of three different types of HPC are determined with each superplasticizer. Electric flux after standard curing for 56 d and chloride ion diffusion coefficient after curing for 28 d of I-IPC are determined to characterize the impermeability of HPC with each superplasticizer. The cross-section was examined using a scanning electron microscopy (SEM) system. Results demonstrate that the AMPS-modified polyacrylic acid superplasticizer has better water-reducing effect and slump than the two commercially available polyacrylie acid superplasticizers. The AMPS-modified polyacrylic acid superplasticizer also shows significant improvement of the compressive strength, especially in comprehensive performance of HPC. In conclusion, the AMPS-modified polyacrylic acid superplastieizer is particularly suitable for the preparation of HPC.展开更多
A kind of transparent plastic material has been prepared with bulk copolymer of MMA-MA containing MA 20 vol% as matrix modified by introducing EtOH during bulk copolymerization to increase the transparency and by copo...A kind of transparent plastic material has been prepared with bulk copolymer of MMA-MA containing MA 20 vol% as matrix modified by introducing EtOH during bulk copolymerization to increase the transparency and by copolymerizing together with metallic salts of MA forming ionomer polymer to improve the heat-tolerance and hardness. The effect of the contents of the additives on the heat stability, hardness and transparency of the copolymer has been studied. The optical homogeneity of the copolymer material has also been examined. It has been found that the specific property of transparent material of this kind may be obtained by controlling the amounts of EtOH and metallic salt of MA.展开更多
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper...In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.展开更多
Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test...Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test model and a split Hopkinson pressure bar model are built to verify the accuracy of the subroutine implemented within the non-linear finite element program LS-DYNA. A numerical model of bird strike on windshield is established to study the responses of windshield under three different bird velocities at three sites. The bird is represented by a cylinder with a hemisphere at each end and the contact-impact coupling algorithm is used in this study. It is found that the implemented subroutine can properly describe the mechanical behavior of polymethyl methaerylate under low and high strain rates and large deformation, and can be used validly.展开更多
In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance...In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.展开更多
Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going o...Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.展开更多
Mesoporous molecular sieves possessing high mesopore volumes and large specific surface areas were prepared and characterized by means of XRD, low temperature N_2 adsorption-desorption measurements, FT IR, Raman, UV...Mesoporous molecular sieves possessing high mesopore volumes and large specific surface areas were prepared and characterized by means of XRD, low temperature N_2 adsorption-desorption measurements, FT IR, Raman, UV-visible diffuse reflectance and XPS spectroscopy. The materials contain both framework and extra-framework Ti centers which exhibit selective oxidation catalytic activity and photocatalytic activity respectively. The catalysis of selective oxidation was studied with the hydroxylation of benzene with hydrogen peroxide and photochemical activity was studied by the yields of ·OH and H_2O_2, respectively.展开更多
基金supported by Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.
基金supported by the National Research Foundation(NRF)grants(2022R1A4A1032832 and 2019R1A6A1A10073079)funded by the Korean government(MSIT)
文摘Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.
基金Funded by the National Natural Science Foundation of China (50773061)
文摘Styrene-butadiene-styrene (SBS) modified bitumen crack filling material with organophilic montmorillonite (OCFM) was prepared by melt blending. X-ray diffraction analysis shows that the interlayer spacing of organophilic montmorillonite (OMMT) in OCFM is widened and an exfoliated structure may be formed. Thermal-oxidative aging behavior of OCFM and SBS modified bitumen crack filling material (SCFM) was investigated. The experimental results indicate that the rate of thermal-oxidative aging of OCFM is much slower than that of SCFM, which can be attributed to barrier of exfoliated structure of OCFM to oxygen.
基金Funded by the National High Technology Research and Development Program of China(863 Program)(No.2015AA034600)Province Science and Technology in Anhui(No.1301021011)
文摘To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.
基金supported by the National Natural Science Foundation of China (90916007)
文摘In this paper, modified two-dimensional peri- odic lattice materials with local resonance phononic band gaps are designed and investigated. The design concept is to introduce some auxiliary structures into conventional pe- riodic lattice materials. Elastic wave propagation in this kind of modified two-dimensional lattice materials is studied us- ing a combination of Bloch's theorem with finite element method. The calculated frequency band structures of illus- trative modified square lattice materials reveal the existence of frequency band gaps in the low frequency region due to the introduction of the auxiliary structures. The mechanism underlying the occurrence of these frequency band gaps is thoroughly discussed and natural resonances of the auxiliary structures are validated to be the origin. The effect of geo- metric parameters of the auxiliary structures on the width of the local resonance phononic band gaps is explored. Finally, a conceptual broadband vibration-insulating structure based on the modified lattice materials is designed and its capabil- ity is demonstrated. The present work is anticipated to be useful in designing structures which can insulate mechanical vibrations within desired frequency ranges.
基金Funded by the Fujian Education Department(Nos.JA11329,JA12412)Quanzhou(Fujian)Technology Research and Development Program(Nos.2013Z158,2013Z47,2010G7)
文摘A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.
基金Funded by the Major State Research Development Program of China during the 13th Five-Year Plan Period(No.2016YFC0700904)
文摘A new type of capric acid(CA)-acid expanded vermiculite(AEV) composite phase change material(PCM) with improved adsorption ability and interface adhesive strength was developed. Through the analysis of non-isothermal phase transition kinetics, modified vermiculite was observed to change and affect the phase transformation mechanism of the composite. AEV was treated with hydrochloric acid to improve the specific surface area and micro-pore structure. The surface area measured by BET increased from 81.94 m^2/g for expanded vermiculite(EV) to 544.13 m^2/g for AEV. CA-EV and CA-AEV composite PCMs were prepared by direct impregnation. The non-isothermal phase transition isotherms of CA-EV and CA-AEV were recorded by DSC at different heating rates(1, 5, 10, 15, and 20 ℃/min), which indicated that the phase transition rate increased with the heating rate and the phase transition process changed. Kinetics parameters were analyzed by a double extrapolation method. The activation energy(E) under the original state(E_(α→0)) of CA-AEV and CA-EV was 1 117 kJ/mol and 937 kJ/mol, respectively, and 1 205 kJ/mol and 1 016 kJ/mol under the thermal equilibrium state(E_(β→0)). The most probabilistic mechanism function of CA-AEV satisfied G(α)=α^(2/3), which followed the Mample special rule, and the function of CA-EV satisfied G(α)=[(1+α)^(1/3)-1]~2, which followed the anti-Jander function.
基金Funded by the Fujian Education Department(Nos.JA11329,JA12412)Quanzhou(Fujian)Technology Research and Development Program(Nos.2013Z47,2013Z158,2010G7)
文摘A self-made 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer and two other commercially available superplasticizers with different molecular structures are used in this study to investigate the effect of an AMPS-modified polyacrylic acid superplasticizer on the properties of concrete materials. In the experiments, initial and 1.5 h slumps over time after admixtion are determined by adding different dosages of three superplasticizers into the premixed concrete to characterize the slump loss resistance of the premixed concrete. The water-reducing rates of three different types of concrete are determined to characterize the water-reducing capacity of the concrete with each superplasticizer. The 3, 7 and 28 d compressive strength is determined to characterize the mechanical properties of the concrete with each superplasticizer. In the meanwhile, 1, 1.5 and 2.0 h slump loss rates over time after admixtion are determined by adding different dosages of the three superplasticizers into the high-performance concrete (HPC) to characterize the slump loss resistance of HPC. The 7, 28, 60 and 90 d compressive strength is determined to characterize the compressive properties of HPC with each superplasticizer. The dry shrinkage rates of three different types of HPC are determined with each superplasticizer. Electric flux after standard curing for 56 d and chloride ion diffusion coefficient after curing for 28 d of I-IPC are determined to characterize the impermeability of HPC with each superplasticizer. The cross-section was examined using a scanning electron microscopy (SEM) system. Results demonstrate that the AMPS-modified polyacrylic acid superplasticizer has better water-reducing effect and slump than the two commercially available polyacrylie acid superplasticizers. The AMPS-modified polyacrylic acid superplasticizer also shows significant improvement of the compressive strength, especially in comprehensive performance of HPC. In conclusion, the AMPS-modified polyacrylic acid superplastieizer is particularly suitable for the preparation of HPC.
基金Project supported by the National Natural Science Foundation of China
文摘A kind of transparent plastic material has been prepared with bulk copolymer of MMA-MA containing MA 20 vol% as matrix modified by introducing EtOH during bulk copolymerization to increase the transparency and by copolymerizing together with metallic salts of MA forming ionomer polymer to improve the heat-tolerance and hardness. The effect of the contents of the additives on the heat stability, hardness and transparency of the copolymer has been studied. The optical homogeneity of the copolymer material has also been examined. It has been found that the specific property of transparent material of this kind may be obtained by controlling the amounts of EtOH and metallic salt of MA.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan (463855/7)
文摘In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.
基金National Natural Science Foundation of China (50375124) Hi-tech Research and Development Program of China (2006AA04Z401)
文摘Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test model and a split Hopkinson pressure bar model are built to verify the accuracy of the subroutine implemented within the non-linear finite element program LS-DYNA. A numerical model of bird strike on windshield is established to study the responses of windshield under three different bird velocities at three sites. The bird is represented by a cylinder with a hemisphere at each end and the contact-impact coupling algorithm is used in this study. It is found that the implemented subroutine can properly describe the mechanical behavior of polymethyl methaerylate under low and high strain rates and large deformation, and can be used validly.
文摘In this study,it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways.It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio(1:3.5).The dispersion process of the masterbatch in base asphalt can effectively be implemented,with good results and a smaller mixing time.The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment.
文摘Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.
基金Supported by the State Major Basic Research Project of China(No. 2 0 0 0 0 4 80 0 9) and the National Natural ScienceFoundation of China(No. 2 0 1730 0 3)
文摘Mesoporous molecular sieves possessing high mesopore volumes and large specific surface areas were prepared and characterized by means of XRD, low temperature N_2 adsorption-desorption measurements, FT IR, Raman, UV-visible diffuse reflectance and XPS spectroscopy. The materials contain both framework and extra-framework Ti centers which exhibit selective oxidation catalytic activity and photocatalytic activity respectively. The catalysis of selective oxidation was studied with the hydroxylation of benzene with hydrogen peroxide and photochemical activity was studied by the yields of ·OH and H_2O_2, respectively.