The central composite process optimization was performed by response surface methodology technique using a design for the treatment of methyltin mercaptide with modified semi-coke. The semi-coke from the coal industry...The central composite process optimization was performed by response surface methodology technique using a design for the treatment of methyltin mercaptide with modified semi-coke. The semi-coke from the coal industry was suitably modified by treating it with phosphoric acid, with a thermal activation process. The objective of the process optimization is to reduce the chemical oxygen demand (COD) and NH4+-N in the methyltin mercaptide industrial effluent. The process variables considered for process optimization are the semi-coke dosage, adsorption time and effluent pH. The optimized process conditions are identified to be a semi-coke dosage of 80 g/L, adsorption time of 90 min and a pH value of 8.34. The ANOVA results indicate that the adsorbent dosage and pH are the significant parameters, while the adsorption time is insignificant, possibly owing to the large range of adsorption time chosen. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy and nitrogen adsorption isotherm. The average BET surface area of modified semi-coke is estimated to be 915 mE/g, with the average pore volume of 0.71 cm3/g and a average pore diameter of 3.09 nm, with micropore volume contributing to 52.36%.展开更多
This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy s...This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.展开更多
This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha p...This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha power transformed Weibull distribution.The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions,which are quite familiar in environmental investigations.Its hazard rate function can be decreasing,increasing,bathtub and upside-down then bathtub shaped.Diverse structural properties of the proposed model are acquired including quantile function,moments,entropies,order statistics,residual life and reversed failure rate function.The parameters of the distribution were estimated using the maximum likelihood function.The maximum likelihood method is employed to estimate the model parameters and the approximate confidence intervals are also computed.Via a simulation study,the performance of the point and interval estimates are compared using different criteria.Employing real lifetime data sets,we verify that the offered model furnishes a better fit than some other lifetime models including Weibull,gamma and alpha powerWeibull models.展开更多
A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function an...A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function and cumulative distribution function is presented. The statistical features of the Generalized Kumaraswamy Generalized Power Gompertz distribution are systematically derived and adequately studied. The estimation of the model parameters in the absence of censoring and under-right censoring is performed using the method of maximum likelihood. The test statistic for right-censored data, criteria test for GKGPG distribution, estimated matrix Ŵ, Ĉ, and Ĝ, criteria test Y<sup>2</sup>n</sub>, alongside the quadratic form of the test statistic is derived. Mean simulated values of maximum likelihood estimates and their corresponding square mean errors are presented and confirmed to agree closely with the true parameter values. Simulated levels of significance for Y<sup>2</sup>n</sub> (γ) test for the GKGPG model against their theoretical values were recorded. We conclude that the null hypothesis for which simulated samples are fitted by GKGPG distribution is widely validated for the different levels of significance considered. From the summary of the results of the strength of a specific type of braided cord dataset on the GKGPG model, it is observed that the proposed GKGPG model fits the data set for a significance level ε = 0.05.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha...Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.展开更多
A new modified circular microstrip antenna with circular polarization is researched in this paper and a new method named for equivalent ellipse is proposed by authors to calculate the patterns, axial ratio and partial...A new modified circular microstrip antenna with circular polarization is researched in this paper and a new method named for equivalent ellipse is proposed by authors to calculate the patterns, axial ratio and partial power gain. The theoretical results agree well with the experimental data.展开更多
The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip mea...The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.展开更多
This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe...The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.展开更多
In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more ...In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system.展开更多
Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy ...Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness.展开更多
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non...In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.展开更多
The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ...The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.展开更多
The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considere...The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.展开更多
This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) ...This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.展开更多
In a grid-integrated photovoltaic system(GIPVS),there exist issues such as surplus active power and inadequate performance of maximum power point tracking(MPPT).A surplus active power causes the overvoltage problem at...In a grid-integrated photovoltaic system(GIPVS),there exist issues such as surplus active power and inadequate performance of maximum power point tracking(MPPT).A surplus active power causes the overvoltage problem at the point of common coupling in low-or medium-voltage grid during the peak hours of power generation.Additionally,the inadequate performance of the MPPT algorithm results in power loss due to high settling time during the sudden change of irradiance.Therefore,to solve the surplus power problem,the curtailment of active power is suggested with improved MPPT algorithm under variable irradiance conditions.In this paper,a derated power generation mode(DPGM)control strategy is presented for the curtailment of active power.Additionally,a drift-free(named as modified)perturb and observe(P&O)technique is also proposed to improve the performance of the MPPT algorithm.Consequently,the DPGM control scheme with the intermediate boost converter shaves the surplus active power during the peak hours of power generation.Furthermore,the modified MPPT algorithm deals with the fluctuation of irradiance during non-peak hours.Thus,the proposed control scheme delivers in a more efficient system during the peak hours of power generation.In addition,it reduces the power loss and settling time during the change of irradiance for non-peak hours.Based on the proposed control scheme,a 30 kW system has been simulated in MATLAB/Simulink using Simpower tools under different environmental conditions.展开更多
基金Projects(5114703,51004059/E041601)supported by the National Natural Science Foundation of China
文摘The central composite process optimization was performed by response surface methodology technique using a design for the treatment of methyltin mercaptide with modified semi-coke. The semi-coke from the coal industry was suitably modified by treating it with phosphoric acid, with a thermal activation process. The objective of the process optimization is to reduce the chemical oxygen demand (COD) and NH4+-N in the methyltin mercaptide industrial effluent. The process variables considered for process optimization are the semi-coke dosage, adsorption time and effluent pH. The optimized process conditions are identified to be a semi-coke dosage of 80 g/L, adsorption time of 90 min and a pH value of 8.34. The ANOVA results indicate that the adsorbent dosage and pH are the significant parameters, while the adsorption time is insignificant, possibly owing to the large range of adsorption time chosen. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy and nitrogen adsorption isotherm. The average BET surface area of modified semi-coke is estimated to be 915 mE/g, with the average pore volume of 0.71 cm3/g and a average pore diameter of 3.09 nm, with micropore volume contributing to 52.36%.
基金supported in part by National Key Research and Development Program of China(No.2022YFB2803002)National Natural Science Foundation of China(Nos.62235005,62127814,62225405,61975093,61927811,61991443,61925104 and 61974080)Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘This paper presents a wide-bandwidth back-illuminated modified uni-traveling-carrier photodiode(MUTC-PD)packaged with standard WR-5 rectangular waveguide for high-speed wireless communications.With optimized epitaxy structure and coplanar waveguide electrodes,the fabricated 4-μm-diameter PD exhibits ultra-flat frequency response and high saturation power.Integrated passive circuits including low-loss bias-tee and E-plane probe are designed to package the PD into a compact module with waveguide output.The packaged PD module has demonstrated a flat frequency response with fluctuations within±2.75 d B over a broadband of 140–220 GHz and a high saturated output power of-7.8 d Bm(166μW)at 140 GHz.For wireless communication applications,the packaged PD is used to implement 1-m free space transmission at carrier frequencies of 150.5 and 210.5 GHz,with transmission rates of 75 and 90 Gbps,respectively.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique.We refer to the new model as modified alpha power transformed Weibull distribution.The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions,which are quite familiar in environmental investigations.Its hazard rate function can be decreasing,increasing,bathtub and upside-down then bathtub shaped.Diverse structural properties of the proposed model are acquired including quantile function,moments,entropies,order statistics,residual life and reversed failure rate function.The parameters of the distribution were estimated using the maximum likelihood function.The maximum likelihood method is employed to estimate the model parameters and the approximate confidence intervals are also computed.Via a simulation study,the performance of the point and interval estimates are compared using different criteria.Employing real lifetime data sets,we verify that the offered model furnishes a better fit than some other lifetime models including Weibull,gamma and alpha powerWeibull models.
文摘A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function and cumulative distribution function is presented. The statistical features of the Generalized Kumaraswamy Generalized Power Gompertz distribution are systematically derived and adequately studied. The estimation of the model parameters in the absence of censoring and under-right censoring is performed using the method of maximum likelihood. The test statistic for right-censored data, criteria test for GKGPG distribution, estimated matrix Ŵ, Ĉ, and Ĝ, criteria test Y<sup>2</sup>n</sub>, alongside the quadratic form of the test statistic is derived. Mean simulated values of maximum likelihood estimates and their corresponding square mean errors are presented and confirmed to agree closely with the true parameter values. Simulated levels of significance for Y<sup>2</sup>n</sub> (γ) test for the GKGPG model against their theoretical values were recorded. We conclude that the null hypothesis for which simulated samples are fitted by GKGPG distribution is widely validated for the different levels of significance considered. From the summary of the results of the strength of a specific type of braided cord dataset on the GKGPG model, it is observed that the proposed GKGPG model fits the data set for a significance level ε = 0.05.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
基金supported by the National Defense Science and Technology Innovation Zone Project (Nos. 17H863-05-ZT-002-040-001 and 18-H863-05-ZT-002-01301
文摘Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.
文摘A new modified circular microstrip antenna with circular polarization is researched in this paper and a new method named for equivalent ellipse is proposed by authors to calculate the patterns, axial ratio and partial power gain. The theoretical results agree well with the experimental data.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003)
文摘The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
基金supported by the China Datang Corporation project“Study on the performance improvement scheme of in-service wind farms”,the Fundamental Research Funds for the Central Universities(2020MS021)the Foundation of State Key Laboratory“Real-time prediction of offshore wind power and load reduction control method”(LAPS2020-07).
文摘The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.
文摘In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system.
文摘Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness.
文摘In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
基金supported by the National Natural Science Foundation of China(No.22075262)。
文摘The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.
文摘The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.
文摘This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.
基金This work was supported by the Department of Science and Technology(DST),India(No.DST/CERI/MI/SG/2017/080).
文摘In a grid-integrated photovoltaic system(GIPVS),there exist issues such as surplus active power and inadequate performance of maximum power point tracking(MPPT).A surplus active power causes the overvoltage problem at the point of common coupling in low-or medium-voltage grid during the peak hours of power generation.Additionally,the inadequate performance of the MPPT algorithm results in power loss due to high settling time during the sudden change of irradiance.Therefore,to solve the surplus power problem,the curtailment of active power is suggested with improved MPPT algorithm under variable irradiance conditions.In this paper,a derated power generation mode(DPGM)control strategy is presented for the curtailment of active power.Additionally,a drift-free(named as modified)perturb and observe(P&O)technique is also proposed to improve the performance of the MPPT algorithm.Consequently,the DPGM control scheme with the intermediate boost converter shaves the surplus active power during the peak hours of power generation.Furthermore,the modified MPPT algorithm deals with the fluctuation of irradiance during non-peak hours.Thus,the proposed control scheme delivers in a more efficient system during the peak hours of power generation.In addition,it reduces the power loss and settling time during the change of irradiance for non-peak hours.Based on the proposed control scheme,a 30 kW system has been simulated in MATLAB/Simulink using Simpower tools under different environmental conditions.