Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM metho...Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM method for SDE converges to the exact solution in L9 sense under given conditions.Two examples are provided to support our conclusions.展开更多
A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued...A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic.展开更多
The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by mea...The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.展开更多
In this paper,our main aim is to investigate the strong convergence rate of the truncated Euler-Maruyama approximations for stochastic differential equations with superlinearly growing drift coefficients.When the diff...In this paper,our main aim is to investigate the strong convergence rate of the truncated Euler-Maruyama approximations for stochastic differential equations with superlinearly growing drift coefficients.When the diffusion coefficient is polynomially growing or linearly growing,the strong convergence rate of arbitrarily close to one half is established at a single time T or over a time interval[0.T],respectively.In both situations,the common one-sided Lipschitz and polynomial growth conditions for the drift coefficients are not required.Two examples are provided to illustrate the theory.展开更多
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.展开更多
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c...In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.展开更多
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are i...We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.展开更多
The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit...The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.展开更多
The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condi...The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.展开更多
In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, ...In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.展开更多
In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV eq...In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV equation and (1 + 1) dimensional Kersten-Krasil Shchik equations by using the modified truncated expansion method. New exact solutions of these equations are found.展开更多
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.1192013).
文摘Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM method for SDE converges to the exact solution in L9 sense under given conditions.Two examples are provided to support our conclusions.
基金supported in part by National Natural Science Foundation of China (Grant No 10772110)
文摘A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic.
文摘The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.
文摘In this paper,our main aim is to investigate the strong convergence rate of the truncated Euler-Maruyama approximations for stochastic differential equations with superlinearly growing drift coefficients.When the diffusion coefficient is polynomially growing or linearly growing,the strong convergence rate of arbitrarily close to one half is established at a single time T or over a time interval[0.T],respectively.In both situations,the common one-sided Lipschitz and polynomial growth conditions for the drift coefficients are not required.Two examples are provided to illustrate the theory.
基金supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
文摘In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.
基金This work is supported by the National Natural Science Foundation of China(No.11671113)the National Postdoctoral Program for Innovative Talents(No.BX20180347).
文摘In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61876192,12061034)the Natural Science Foundation of Jiangxi(Grant Nos.20192ACBL21007,2018ACB21001)+1 种基金the Fundamental Research Funds for the Central Universities(CZT20020)Academic Team in Universities(KTZ20051).
文摘We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the National Natural Science Foundation of China(Grant No.61073049)
文摘The division operation is not frequent relatively in traditional applications, but it is increasingly indispensable and important in many modern applications. In this paper, the implementation of modified signed-digit (MSD) floating-point division using Newton-Raphson method on the system of ternary optical computer (TOC) is studied. Since the addition of MSD floating-point is carry-free and the digit width of the system of TOC is large, it is easy to deal with the enough wide data and transform the division operation into multiplication and addition operations. And using data scan and truncation the problem of digits expansion is effectively solved in the range of error limit. The division gets the good results and the efficiency is high. The instance of MSD floating-point division shows that the method is feasible.
文摘The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175092)the Scientific Research Fund of Education Department of Zhejiang Province of China (Grant No. Y201017148)K. C. Wong Magna Fund in Ningbo University
文摘In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.
文摘In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV equation and (1 + 1) dimensional Kersten-Krasil Shchik equations by using the modified truncated expansion method. New exact solutions of these equations are found.