期刊文献+
共找到2,127篇文章
< 1 2 107 >
每页显示 20 50 100
A Review of Modular Multilevel Converters 被引量:100
1
作者 YANG Xiaofeng LIN Zhiqin ZHENG Trillion Q. YOU Xiaojie 《中国电机工程学报》 EI CSCD 北大核心 2013年第6期I0001-I0022,共22页
模块组合多电平变换器(modular multilevel converter,MMC)具有高度模块化、易于扩展、输出电压波形好等特点,尤其适用于中高压大功率系统应用。首先介绍MMC的电路拓扑和工作原理,总结MMC的主要技术特点;然后分别回顾MMC在脉冲调... 模块组合多电平变换器(modular multilevel converter,MMC)具有高度模块化、易于扩展、输出电压波形好等特点,尤其适用于中高压大功率系统应用。首先介绍MMC的电路拓扑和工作原理,总结MMC的主要技术特点;然后分别回顾MMC在脉冲调制、直流电压控制、预充电、环流、谐波、数学模型、主电路参数设计、故障保护等关键问题的最新研究进展,以及其在电力传动、电能质量问题治理领域的工程应用现状,在此基础上指出MMC今后亟待研究的关键问题。相关研究结果表明,MMC在电力系统中有广泛的应用前景,是未来中高压大功率系统,尤其是高压输电技术的重要发展方向。 展开更多
关键词 多电平变换器 模块化 直流电容器 工作电压 电平转换器 拓扑结构 电路布局 工业应用
下载PDF
On-Line Fault Diagnosis and Fault-Tolerant Operation of Modular Multilevel Converters –A Comprehensive Review 被引量:10
2
作者 JiangBiao He Qichen Yang Zheng Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第4期360-372,共13页
Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion sys... Modular multilevel converters(MMCs)have been one of the most broadly used multilevel converter topologies in industrial applications,particularly in medium-voltage motor drives and high-voltage dc power conversion systems.However,due to the utilization of large amount of semiconductor devices,the reliability of MMCs becomes one of the severe challenges constraining their further development and applications.In this paper,common electrical faults of the MMC have been summarized and analyzed,including open-circuit switching faults,short-circuit switching faults,dc-bus short-circuit faults,and single line-to-ground faults on the ac side.A thorough and comprehensive review of the existing online fault diagnostic methods has been conducted.In addition,fault-tolerant operation strategies for such various fault scenarios in MMCs have been presented.All the fault diagnosis and fault-tolerant operation strategies are comparatively evaluated,which aims to provide a state-of-the-art reference on the MMC reliability for future research and industrial applications. 展开更多
关键词 modular multilevel converters switching open-circuit fault line-to-ground fault diagnosis fault tolerance
下载PDF
Nested-loop Mechanism Based Modular Multilevel Converter Topology and Optimal Design 被引量:7
3
作者 LIU Xinghua ZHAO Chengyong PENG Maolan GUO Chunyi ZHANG Baoshun 《中国电机工程学报》 EI CSCD 北大核心 2013年第9期I0009-I0009,共1页
普通模块化多电平换流器(modular multilevelconverter,MMC)拓扑中,因子模块数量较多,系统需采集和处理的信息量大,导致控制系统硬件构成复杂。提出一种基于循环嵌套机理的MMC拓扑,其电平输出能力得到显著提升。通过上下两组子模块的... 普通模块化多电平换流器(modular multilevelconverter,MMC)拓扑中,因子模块数量较多,系统需采集和处理的信息量大,导致控制系统硬件构成复杂。提出一种基于循环嵌套机理的MMC拓扑,其电平输出能力得到显著提升。通过上下两组子模块的协调投切,相对于普通MMC拓扑,新型拓扑输出相同电平数所需的子模块及控制设备数量大幅减少。阐述该新型拓扑的构成方式及基本参数选取原则;针对循环嵌套结构,设计相应的模块协调控制策略;分别以模块用量最小化和换流器运行损耗最小化为目标,优化设计拓扑构成方案。在RTDS中搭建换流器模型,仿真结果表明,新型拓扑具备更强的电平输出能力,并达到大幅减少子模块数量、简化控制系统硬件构成的目标。 展开更多
关键词 多电平变换器 拓扑结构 模块化 优化设计 循环机制 嵌套 电子模块 硬件结构
下载PDF
Arm Voltage Balancing Control of Modular Multilevel Resonant Converter 被引量:7
4
作者 Jianjia Zhang Shuai Shao +2 位作者 Yucen Li Junming Zhang Kuang Sheng 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第4期303-308,共6页
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve... Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method. 展开更多
关键词 modular multilevel resonant(MMR)converter arm voltage balancing duty cycle
下载PDF
Hybrid Predictive Control with Simple Linear Control Based Circulating Current Suppression for Modular Multilevel Converters 被引量:5
5
作者 Yuanxiang Sun Zhen Li Zhenbin Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期335-341,共7页
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli... The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution. 展开更多
关键词 Circulating current suppression hybrid predictive control linear control modular multilevel converters.
下载PDF
A Novel Square-wave Pulse Rotation Modulation Strategy for Modular Multilevel Converters 被引量:9
6
作者 YANG Xiaofeng LIN Zhiqin ZHENG Trillion Q YOU Xiaojie 《中国电机工程学报》 EI CSCD 北大核心 2013年第9期I0006-I0006,共1页
悬浮直流电容电压的均衡问题是模块组合多电平变换器(modular multilevel converter,MMC)的关键问题之一。提出一种可实现MMC直流电容电压平衡的方波脉冲循环调制(square-wave pulse rotation modulation,SWPRM)策略,在保证合成的... 悬浮直流电容电压的均衡问题是模块组合多电平变换器(modular multilevel converter,MMC)的关键问题之一。提出一种可实现MMC直流电容电压平衡的方波脉冲循环调制(square-wave pulse rotation modulation,SWPRM)策略,在保证合成的阶梯波输出波形不变的前提下,根据MMC的拓扑结构和工作原理,对传统方波脉冲列进行脉冲优化,并按照一定的次序和切换周期进行循环和判断反相调整,获得的循环方波脉冲列作为最终驱动脉冲用于实现对MMC的控制。实验结果表明,采用提出的方波脉冲循环调制策略无需任何电容电压控制措施,在较低开关频率下,实现了MMC各功率单元间有功能量的平均分配和直流电容电压的均衡。 展开更多
关键词 调制策略 方波脉冲 多电平变流器 模块化 旋转 直流电容器 多电平变换器 平衡控制
下载PDF
Research on the Topology and Control Scheme of an Innovative Modular Multilevel Converter 被引量:1
7
作者 Daixiang Zhu Ming Ding 《Energy and Power Engineering》 2013年第4期1512-1516,共5页
This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequent... This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequently, lower total losses of the transmission system. The fundamental concept and the applied control scheme are introduced in detail. A modified multilevel fundamental switching modulation scheme adopting the multicarrier pulse width modulation concept is presented. A capacitor voltage balancing technique is proposed. With the established simulation model of the 11-level MMC, the modulation and balancing strategy presented are confirmed by MATLAB/SIMULINK simulations. The multicarrier pulse width modulation converter strategy enhances the fundamental output voltage and reduces total harmonic distortion. This new type of converter is suitable for high-voltage drive systems and power system applications such as high voltage dc (HVDC) transmission, reactive power compensation equipment and so on. 展开更多
关键词 Sub-modular modular multilevel converter FUNDAMENTAL Switching Modulation TOPOLOGY CAPACITOR Voltage Balancing
下载PDF
Modeling and Control of the Modular Multilevel Converter (MMC) based Solid State Transformer (SST) with Magnetic Integration 被引量:1
8
作者 Gengzhe Zheng Yu Chen Yong Kang 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第4期309-318,共10页
Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link a... Solid state transformer(SST)can provide more advanced functionalities compared with conventional transformer,and has great potential in smart grid application.Recently,the SST with medium frequency(MF)isolation link and magnetic integration feature has been proposed,which can reduce the system volume and thus increase the power density.However,the magnetic integration also introduces strong coupling between the line frequency(LF)and MF variables,which poses a great challenge on modeling and control issues.This paper proposes a modeling and control method for an SST with magnetic integration and mixed-frequency modulation.A mathematical model based on dual d-q references is deduced,and then a cascaded control system is designed according to the model.Parameters of the controller for the variables at one frequency are properly designed to avoid disturbance from the variables at the other frequency.The simulation and experimental results show good decoupling effect and satisfactory dynamics performance of the proposed control system. 展开更多
关键词 solid state transformer(SST) modular multilevel converter(MMC) control system mathematical model
下载PDF
A Novel Voltage Balancing Method of Modular Multilevel Converters
9
作者 Zunfang Chu Zixin Li +1 位作者 Ping Wang Yaohua Li 《Energy and Power Engineering》 2013年第4期1172-1175,共4页
In this paper, a novel voltage balancing method of modular multilevel converters (MMCs) is proposed. This method divides the voltages of sub-module capacitors in each arm into several groups and the voltage balancing ... In this paper, a novel voltage balancing method of modular multilevel converters (MMCs) is proposed. This method divides the voltages of sub-module capacitors in each arm into several groups and the voltage balancing is based on these groups. The proposed method can save sorting time greatly compared with the conventional method. Simulation results on a MMC based three-phase inverter show validity of the proposed method. 展开更多
关键词 modular multilevel converter VOLTAGE Balancing
下载PDF
Stop Control Strategy of Modular Multilevel Converter Based HVDC System
10
作者 Chengjun Xia Bingmei Jin +1 位作者 Junjun Liang Meng Li 《Journal of Power and Energy Engineering》 2014年第9期182-190,共9页
The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is co... The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective. 展开更多
关键词 modular multilevel converter (MMC) STOP Control Energy FEEDBACK
下载PDF
Reduced Switching-Frequency State of Charge Balancing Strategy for Battery Integrated Modular Multilevel Converter
11
作者 胡省 张建忠 《Journal of Donghua University(English Edition)》 CAS 2021年第6期504-510,共7页
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba... A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings. 展开更多
关键词 battery management system(BMS) energy storage system modular multilevel converter reduced switching-frequency(RSF) state of charge(SOC)balancing
下载PDF
DC Traction Power Supply System Based on Modular Multilevel Converter Suitable for Energy Feeding and De-icing
12
作者 Lingxi Hou Shuqing Zhang +4 位作者 Yingdong Wei Xiaoqian Li Qirong Jiang Mingrui Li Weirui Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期649-659,共11页
A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel convert... A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy. 展开更多
关键词 DC traction power supply system de-icing for catenary energy feeding modular multilevel converter based on full-bridge submodules(FBSM-MMC) urban rail transit
原文传递
Mixed Dead-time Effect Suppression Strategy for Modular Multilevel Converters
13
作者 Zhi Geng Minxiao Han 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1075-1084,共10页
Dead time is necessary for the coupled power switches to prevent shoot-through,especially in the modular multilevel converters(MMCs)with a large number of power switches.This paper proposes a dead-time effect suppress... Dead time is necessary for the coupled power switches to prevent shoot-through,especially in the modular multilevel converters(MMCs)with a large number of power switches.This paper proposes a dead-time effect suppression strategy for MMCs with nearest level modulation.The operational principles of MMCs are first analyzed.According to the operational features of MMCs,the method that removes a switching signal from the coupled switches and the reduced switching frequency voltage balancing algorithms(RSFVBAs)are mixed in the proposed method.In the intervals that are furthest away from the zerocrossing points(ZCP)of arm currents,the single switching signal method can completely eliminate the dead-time effect(DTE).Alternatively,the DTE is suppressed by the RSFVBA in intervals that are close to the ZCP.By the combination of the two methods,the dependence of the DTE suppression method on currents is reduced and the influences of ZCP are also released without degrading the normal operation performance of MMCs.Moreover,the output performance of MMCs is improved and the voltage stress on the arm inductor dramatically decreases.Finally,the validation of the method is verified by the simulation results with the professional tool Matlab/Simulink. 展开更多
关键词 Dead-time effect modular multilevel converters switching frequency voltage balancing algorithm
原文传递
Fully Decoupled Branch Energy Balancing Control Method for Modular Multilevel Matrix Converter Based on Sequence Circulating Components
14
作者 Zexin Zhao Weijiang Chen +5 位作者 Zhichang Yang Guoliang Zhao Bin Han Yunfei Xu Nianwen Xiang Shulai Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第1期235-247,共13页
The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for... The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for voltage balancing between branches.To solve this problem,this paper defines sequence circulating components and theoretically analyzes the influence mechanism of different sequence circulating components on branch capacitor voltage.A fully decoupled branch energy balancing control method based on four groups of sequence circulating components is proposed.This method can control capacitor voltages of nine branches in horizontal,vertical and diagonal directions.Considering influences of both circulating current and voltage,a cross decoupled control is designed to improve control precision.Simulation results are taken from a low-frequency transmission system based on PSCAD/EMTDC,and effectiveness and precision of the proposed branch energy balancing control method are verified in the case of nonuniform parameters and an unbalanced power system. 展开更多
关键词 Branch energy balancing control decoupled control low-frequency AC transmission modular multilevel matrix converter(M3C) sequence circulating components
原文传递
Isolated Bipolar Modular Multilevel DC-DC Converter with Self-balancing Capability for Interconnection of MVDC and LVDC Grids
15
作者 Jinmu Lai Xin Yin +3 位作者 Yaoqiang Wang Lin Jiang Zia Ullah Xianggen Yin 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期365-379,共15页
Bipolar medium-voltage DC(MVDC)and lowvoltage DC(LVDC)grids have the advantages of flexible integration of distributed renewable-energy generation and reliable power supply.In order to achieve voltage conversion,power... Bipolar medium-voltage DC(MVDC)and lowvoltage DC(LVDC)grids have the advantages of flexible integration of distributed renewable-energy generation and reliable power supply.In order to achieve voltage conversion,power transfer,and electrical isolation for bipolar MVDC and LVDC grids,a high-power DC-DC converter is essential.Therefore,this paper proposes an isolated bipolar modular multilevel DCDC converter(BiMMDC)with power self-balancing capability for interconnection of MVDC and LVDC grids.The proposed BiMMDC consists of two series connected MMCs in the MV stage to configure a bipolar MVDC interface,and interleaved converters combined with a dual-transformer are designed in the LV stage to configure the bipolar LVDC interface and to provide a self-balancing capability.Equivalent circuits of two series-connected MMCs and a dual-transformer with interleaved converters are derived.After that,operation principles of the proposed BiMMDC are introduced,considering balanced/unbalanced power transfer of bipolar LVDC grid and monopolar shortcircuit or open-circuit faults at MVDC grid.The control scheme is also presented for the proposed BiMMDC under different operating conditions.Finally,a Matlab simulation and controller hardware-in-the-loop(CHIL)evaluation results are provided to validate the feasibility and effectiveness of the proposed typology and its operating performance. 展开更多
关键词 BIPOLAR DC-DC converter equivalent circuit modular monopolar operation multilevel self-balancing
原文传递
Modular Multilevel Converter with Thyristor DC-link Switch for Full-torque Variable-speed Drives
16
作者 Shaoze Zhou Binbin Li +1 位作者 Dianguo Xu Gen Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期293-305,共13页
The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capa... The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capacitor voltage ripple is a severe challenge faced by MMC at low motor speeds.Recently,a hybrid MMC(HMMC)topology is proven to be a competitive solution because of its lower cell capacitor voltage ripple and not demonstrating a common-mode voltage(CMV)problem compared with other methods.However,the DC-link switch with IGBT limits HMMC from being applied in highvoltage applications.This paper uses a thyristor instead of IGBT as the DC-link switch.To ensure the thyristor can be softly turned on and safely turned off,a new control scheme is proposed.When using this proposed scheme,HMMC can also tolerate the failure of the thyristor being turned-off without shutting down the system,effectively improving its reliability.The cell capacitor voltage ripple analysis is presented considering the effects of the thyristor switching process.In addition,a decoupled energy balancing control is utilized to suppress the fluctuation of the DC current.Experimental results obtained from a 380 V/7.5 kW downscaled prototype validate the effectiveness of starting up a motor from the standby mode to rated speed applying full-torque. 展开更多
关键词 Capacitor voltage ripple DC/AC power conversion DC-link switch modular multilevel convert(MMC) THYRISTOR variable-speed drives
原文传递
Phasor Analytical Model of Non-isolated DC/DC Converter Based on Modular Multilevel Converter for DC Transmission Grids
17
作者 A.Jamshidi Far D.Jovcic 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期611-621,共11页
Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family... Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family of converters which is suitable for a range of studies like DC grid power flow or DC/DC parametric design.The 30th-order phasor model is derived in 3 coordinate frames:zero sequence(DC),fundamental frequency(dq),and double frequency(d2q2).The second-harmonic current suppression control is included as an option.Additionally,an estimation of the required control signals is presented,and a closed-loop model is developed which facilitates direct calculation of all variables and fast parametric studies.The accuracy of the proposed models is verified against a detailed PSCAD model for a wide range of parameters.The studies illustrate the importance of the second-harmonic components on the model accuracy.Finally,the impact of the converter parameters on the performance is studied,and a basic eigenvalue stability analysis is given. 展开更多
关键词 High-voltage direct current(HVDC)transmission modular multilevel converter(MMC) non-isolated DC/DC converter phasor modelling
原文传递
Impedance Analysis of Grid Forming Control Based Modular Multilevel Converters
18
作者 Rongcai Pan Guangfu Tang +1 位作者 Shan Liu Zhiyuan He 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期967-979,共13页
Grid-forming control(GFC)is promising for power electronics based power systems with high renewable energy penetration.Naturally,the impedance modeling for GFC is necessary and has gained significant attention recentl... Grid-forming control(GFC)is promising for power electronics based power systems with high renewable energy penetration.Naturally,the impedance modeling for GFC is necessary and has gained significant attention recently.However,most of the impedance analyses for GFC are based on a twolevel converter(TLC)rather than a modular multilevel converter(MMC).MMC differs from TLC with respect to its dominant multi-frequency response.It is necessary to analyze the impedance of GFC-based MMC owing to its superiority in highvoltage direct current(HVDC)transmission to interlink two weak AC systems with high renewable energy penetration.As the main contribution,this paper presents the AC-and DC-side impedance analyses for the GFC-based MMC with both power and DC voltage control using the harmonic transfer function(HTF),and compares the impedances of GFC-based MMC and TLC.It is inferred that although the impedance is mainly influenced within 200 Hz,the instability still could occur owing to negative resistance triggered by relatively larger parameters.The difference in AC-side impedance with power and DC voltage control is not apparent with proper parameters,while the DC-side impedance differs significantly.The generalized Nyquist criterion is necessary for AC-side stability owing to the relatively large coupling terms under GFC.Moreover,the coupling between AC-and DC-side impedances is noneligible,especially considering the DC-side resonance around the system resonant peak.The effects of parameters,system strength,and virtual impedance on the impedance shaping are analyzed and verified through simulations. 展开更多
关键词 Sequence impedance modular multilevel converter(MMC) grid-forming control(GFC) harmonic transfer function generalized Nyquist criterion
原文传递
Linear Active Disturbance Rejection Control and Stability Analysis for Modular Multilevel Converters Under Weak Grid
19
作者 Hailiang Xu Mingkun Gao +1 位作者 Pingjuan Ge Jiabing Hu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期2028-2042,共15页
The modular multilevel converters(MMCs) are popularly used in high-voltage direct current(HVDC) transmission systems. However, for the direct modulation based MMC, its complex internal dynamics and the interaction wit... The modular multilevel converters(MMCs) are popularly used in high-voltage direct current(HVDC) transmission systems. However, for the direct modulation based MMC, its complex internal dynamics and the interaction with the grid impedance would induce the frequency coupling effect, which may lead to instability issues, especially in the case of weak grid. To effectively suppress the sub-and super-synchronous oscillations, this paper proposes a linear active disturbance rejection control(LADRC) based MMC control strategy. The LADRC mainly consists of the linear extended state observer(LESO) and the linear state error feedback(LSEF). And it is a potential method to enhance the system stability margin, attributing to its high anti-interference capability and good tracking performance. Thereupon, the system small-signal impedance model considering frequency coupling is established. And the effect of the introduction of the LADRC on the system stability is further investigated using the Nyquist criterion. Particularly, the influences of key control parameters on the stability are discussed in detail. Meanwhile, the impact of LADRC on the transient performance is explored through closed-loop zero poles. Finally, the correctness of the theoretical analysis and the effectiveness of the proposed control strategy are verified via electromagnetic simulations. 展开更多
关键词 modular multilevel converter(MMC) linear active disturbance rejection control(LADRC) sub-and supersynchronous oscillation stability weak grid
原文传递
Single-ended Fault Detection Scheme Using Support Vector Machine for Multi-terminal Direct Current Systems Based on Modular Multilevel Converter
20
作者 Guangyang Zhou Xiahui Zhang +2 位作者 Minxiao Han Shaahin Filizadeh Zhi Geng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期990-1000,共11页
This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche... This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability. 展开更多
关键词 Fault detection short-circuit fault multi-terminal direct current systems based on modular multilevel converter support vector machine(SVM) wavelet transform
原文传递
上一页 1 2 107 下一页 到第
使用帮助 返回顶部