期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
FPGA-Based Real-Time Simulation of Modular Multilevel Converter HVDC Systems
1
作者 Luc-André Grégoire Jean Bélanger Wei Li 《Journal of Energy and Power Engineering》 2012年第7期1119-1125,共7页
AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for H... AC-HVDC-AC energy conversion systems using MMC (modular multilevel converters) are becoming popular to integrate distributed energy systems to the main grid. Such multilevel converters pose a serious problems for HIL (hardware in the loop) simulators required for control, protection design and testing due to the large number of cells that must be simulated individually using very small time steps. This paper demonstrates the advantages of using a very small time step to simulate a MMC topology. The MMC is implemented on FPGA (fiel-programmable gate array) to simulate fast transient with a time step of 250 ns. The AC network and HVDC bus is simulated on the PC, with a slower time step of 10 μs to 20 μs. The simulator architecture and the components simulated on the FPGA and on the PC will be discussed, as well as the method allowing the interconnection of this slow and fast system. 展开更多
关键词 FPGA simulation modular multi-level voltage source converters (MMC) MMC converter real-time simulation HIL(hardware-in-the-loop).
下载PDF
Isolated Bipolar Modular Multilevel DC-DC Converter with Self-balancing Capability for Interconnection of MVDC and LVDC Grids
2
作者 Jinmu Lai Xin Yin +3 位作者 Yaoqiang Wang Lin Jiang Zia Ullah Xianggen Yin 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期365-379,共15页
Bipolar medium-voltage DC(MVDC)and lowvoltage DC(LVDC)grids have the advantages of flexible integration of distributed renewable-energy generation and reliable power supply.In order to achieve voltage conversion,power... Bipolar medium-voltage DC(MVDC)and lowvoltage DC(LVDC)grids have the advantages of flexible integration of distributed renewable-energy generation and reliable power supply.In order to achieve voltage conversion,power transfer,and electrical isolation for bipolar MVDC and LVDC grids,a high-power DC-DC converter is essential.Therefore,this paper proposes an isolated bipolar modular multilevel DCDC converter(BiMMDC)with power self-balancing capability for interconnection of MVDC and LVDC grids.The proposed BiMMDC consists of two series connected MMCs in the MV stage to configure a bipolar MVDC interface,and interleaved converters combined with a dual-transformer are designed in the LV stage to configure the bipolar LVDC interface and to provide a self-balancing capability.Equivalent circuits of two series-connected MMCs and a dual-transformer with interleaved converters are derived.After that,operation principles of the proposed BiMMDC are introduced,considering balanced/unbalanced power transfer of bipolar LVDC grid and monopolar shortcircuit or open-circuit faults at MVDC grid.The control scheme is also presented for the proposed BiMMDC under different operating conditions.Finally,a Matlab simulation and controller hardware-in-the-loop(CHIL)evaluation results are provided to validate the feasibility and effectiveness of the proposed typology and its operating performance. 展开更多
关键词 BIPOLAR dc-dc converter equivalent circuit modular monopolar operation MULTILEVEL self-balancing
原文传递
A Qualitative Assessment of a Modified Multilevel Converter Topology M2LeC for Lightweight Low-Cost Electric Propulsion
3
作者 Paul H. Riley Obrad Dordevic +2 位作者 Keith Pullen Liliana DeLilo Massimo De Giorgio 《Engineering(科研)》 2020年第7期496-515,共20页
A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining th... A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining the power electronics with batteries using low-voltage MOSFET transistors in a series cascade arrangement the cost and mass targets could be met 12 years earlier (in 2023 and 20 times lighter if an application specific integrated circuit (ASIC) is used. A 200 kW peak reference car was used to evaluate cost and mass benefits using four different topologies of power electronics. Vehicle installation is shown to be simplified as only passive cooling is required removing the need for liquid cooling systems and the arrangement is inherently safe;no high voltages are present when the vehicle is stationary. The inherently higher efficiency of CHB increases vehicle range. The converter with integrated batteries can also behave as an integrated on-board battery charger delivering additional off-vehicle benefits by removing the need for costly external chargers. 展开更多
关键词 Power Electronics Electric Vehicles Cascaded H Bridge CHB modular multi-level converter MMC MLC
下载PDF
Protection of large partitioned MTDC Networks Using DC-DC converters and circuit breakers 被引量:10
4
作者 Md Habibur Rahman Lie Xu Liangzhong Yao 《Protection and Control of Modern Power Systems》 2016年第1期170-178,共9页
This paper proposes a DC fault protection strategy for large multi-terminal HVDC(MTDC)network where MMC based DC-DC converter is configured at strategic locations to allow the large MTDC network to be operated interco... This paper proposes a DC fault protection strategy for large multi-terminal HVDC(MTDC)network where MMC based DC-DC converter is configured at strategic locations to allow the large MTDC network to be operated interconnected but partitioned into islanded DC network zones following faults.Each DC network zone is protected using either AC circuit breakers coordinated with DC switches or slow mechanical type DC circuit breakers to minimize the capital cost.In case of a DC fault event,DC-DC converters which have inherent DC fault isolation capability provide‘firewall’between the faulty and healthy zones such that the faulty DC network zone can be quickly isolated from the remaining of the MTDC network to allow the healthy DC network zones to remain operational.The validity of the proposed protection arrangement is confirmed using MATLAB/SIMULINK simulations. 展开更多
关键词 DC circuit breaker dc-dc converter DC fault HVDC modular multilevel converter(MMC) Network
原文传递
Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller
5
作者 He Wang Xiangsheng Xu +1 位作者 Guanye Shen Bian Jing 《Energy Engineering》 EI 2023年第10期2251-2272,共22页
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D... There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure. 展开更多
关键词 DC power flow controller model predictive control modular multi-level converter control strategy dynamic performance
下载PDF
Overview on Reliability of Modular Multilevel Cascade Converters 被引量:4
6
作者 Zhengming Zhao Kai Li +2 位作者 Ye Jiang Sizhao Lu Liqiang Yuan 《Chinese Journal of Electrical Engineering》 2015年第1期37-49,共13页
Multi-level converters have been used extensively in modern industry which calls for energy conversion with high-power and high-or medium-voltage.Because of its modularity and scalability,the multi-level converter wit... Multi-level converters have been used extensively in modern industry which calls for energy conversion with high-power and high-or medium-voltage.Because of its modularity and scalability,the multi-level converter with modular structure can be extended to different voltage levels and has a variety of forms in practical applications.It has attracted much attention from academia in the past decade,however,as a result of the numerous vulnerable power electronics sub-modules,significant challenges remain with regards to reliability.After summarizing the current research status of modular multilevel cascade converters,the main issues of reliability are reviewed in the paper.Firstly,the failure cases are thoroughly surveyed and classified,and the main failure causes are analyzed.Secondly,the reliability evaluation methods are reviewed and applied to the modular multilevel cascade converters.Thirdly,some promising measures to improve the reliability are presented and discussed,including parameter selection,redundancy design,fault-tolerant control and so on.Then,a complete reliability-oriented design procedure for the modular multilevel cascade converters is proposed.Finally,the challenges and opportunities to improve the reliability are concluded. 展开更多
关键词 RELIABILITY modular multi-level cascade converters failure modes failure rate reliability evaluation FAULT-TOLERANT
原文传递
A Novel Location Method for Interline Power Flow Controllers Based on Entropy Theory
7
作者 Qiuyu Li Baohong Li +3 位作者 Qin Jiang Tianqi Liu Yin Yue Yingmin Zhang 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第3期70-81,共12页
As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Neverthe... As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases. 展开更多
关键词 Flexible alternative current transmission systems interline power flow controller modular multi-level converter optimized location method power flow transfer entropy
原文传递
R&D and application of voltage sourced converter based high voltage direct current engineering technology in China 被引量:56
8
作者 Guangfu TANG Zhiyuan HE Hui PANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第1期1-15,共15页
As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out... As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids. 展开更多
关键词 Voltage sourced converter based high voltage direct current(VSC based HVDC) Two-level converter modular multi-level converter(MMC) Direct current grid(DC grid)
原文传递
Fault Ride-through Hybrid Controller for MMC-HVDC Transmission System via Switching Control Units Based on Bang-bang Funnel Controller 被引量:1
9
作者 Yang Liu Zehui Lin +1 位作者 Chenying Xu Lei Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期599-610,共12页
This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ... This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC). 展开更多
关键词 Bang-bang funnel controller(BBFC) fault ride-through hybrid controller modular multi-level converter based high-voltage direct-current(MMC-HVDC) switching control unit
原文传递
Optimization and Configuration of Control Parameters to Enhance Small-signal Stability of Hybrid LCC-MMC HVDC System 被引量:6
10
作者 Chunyi Guo Peng Cui Chengyong Zhao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第1期213-221,共9页
This paper investigates the small-signal stability of the hybrid high-voltage direct current(HVDC)transmission system.The system is composed of line commutated converter(LCC)as rectifier and modular multi-level conver... This paper investigates the small-signal stability of the hybrid high-voltage direct current(HVDC)transmission system.The system is composed of line commutated converter(LCC)as rectifier and modular multi-level converter(MMC)as inverter under weak AC grid condition.Firstly,the impact of short-circuit ratio(SCR)at inverter side on the system stability is investigated by eigen-analysis,and the key control parameters which have major impact on the dominant mode are identified by the participation factor and sensitivity analysis.Then,considering the quadratic index and damping ratio characteristic,an objective function for evaluating the system stability is developed,and an optimization and configuration method for control parameters is presented by the utilization of Monte Carlo method.The eigenvalue results and the electromagnetic transient(EMT)simulation results show that,with the optimized control parameters,the small-signal stability and the dynamic responses of the hybrid system are greatly improved,and the hybrid system can even operate under weak AC grid condition. 展开更多
关键词 Hybrid high-voltage direct current(HVDC) line commutated converter(LCC) modular multi-level converter(MMC) optimization of control parameter
原文传递
The Averaged-value Model of a Flexible Power Electronics Based Substation in Hybrid AC/DC Distribution Systems 被引量:4
11
作者 Hong Liu Zhanfeng Deng +5 位作者 Xialin Li Li Guo Di Huang Shouqiang Fu Xiangyu Chen Chengshan Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第2期452-464,共13页
The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC vo... The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC voltage levels,the FPES has adopted a novel topology integrating modular multilevel converter(MMC)and four-winding medium frequency transformer(FWMFT)based multiport DC-DC converter,which can significantly reduce capacitance in each sub-module(SM)of a MMC and also save space and cost.In this paper,in order to accelerate speed of electromagnetic transient(EMT)simulations of FPES based hybrid AC/DC distribution systems,an averaged-value model(AVM)is proposed for efficient and accurate representation of FPES.Assume that all SM capacitor voltages are perfectly balanced in the MMC,then the MMC behavior can be modeled using controlled voltage sources based on modulation voltages from control systems.In terms of the averaged current transfer characteristics among the windings of the FWMFT,we consider that all multiport DC-DC converters are controlled with the same dynamics,a lumped averaged model using controlled current and voltage sources has been developed for these four-port DC-DC converters connected to the upper or lower arms of the MMC.The presented FPES AVM model has been tested and validated by comparison with a detailed IGBT-based EMT model.Results show that the AVM is significantly more efficient while maintaining its accuracy in an EMT simulation. 展开更多
关键词 Averaged-value model(AVM) flexible power electronics substation(FPES) four-winding medium frequency transformer(FWMFT) hybrid AC/DC distribution systems modular multilevel converter(MMC) multiport dc-dc converter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部