Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS r...Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.展开更多
In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,lim...In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation.To solve these problems,herein,we introduce abundant oxygen vacancies into the flower-likeδ-MnO_(2)nanostructure and effectively modulate the vacancy defects to reach the optimal level(δ-MnO_(2)-x-2.0).The smart design intrinsically tunes the electronic structure,guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites,which not only effectively accelerates charge transfer rate during reaction processes,but also endows more redox reactions,as verified by first-principle calculations.These merits can help the fabricatedδ-MnO_(2)-x-2.0 cathode to present a large specific capacity of 551.8 mAh g^(-1) at 0.5 A g^(-1),high-rate capability of 262.2 mAh g^(-1) at 10 A g^(-1) and an excellent cycle lifespan(83%of capacity retention after 1500 cycles),which is far superior to those of the other metal compound cathodes.In addition,the charge/discharge mechanism of theδ-MnO_(2)-x-2.0 cathode has also been elaborated through ex situ techniques.This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.展开更多
Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in wor...Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.展开更多
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulatio...Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulation plays an important role in the developmental origins of osteoporosis; however, few studies have investigated the potential of epigenetic therapy to improve or rescue the osteogenic ability of bone marrow mesenchymal stem cells(BMMSCs) under osteoporotic conditions. Here, we investigated pargyline, an inhibitor of lysine-specific demethylase 1(LSD1), which mainly catalyzes the demethylation of the di- and mono-methylation of H3K4. We demonstrated that 1.5 mmol·Lpargyline was the optimal concentration for the osteogenic differentiation of human BMMSCs. Pargyline rescued the osteogenic differentiation ability of mouse BMMSCs under osteoporotic conditions by enhancing the dimethylation level of H3K4 at the promoter regions of osteogenesis-related genes. Moreover, pargyline partially rescued or prevented the osteoporotic conditions in aged or ovariectomized mouse models, respectively. By introducing the concept of epigenetic therapy into the field of osteoporosis, this study demonstrated that LSD1 inhibitors could improve the clinical practice of MSC-based bone tissue engineering and proposes their novel use to treat osteoporosis.展开更多
Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetrati...Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetration is commonly overlooked. Therefore,in this study,taking fluorescent labeled PLGA(poly(lactic-co-glycolic acid)) nanoparticles as a tool,the influence of anionic and nonionic surfactants on mucus penetration ability of nanoparticles and their mucus barrier regulating ability were studied. The movement of PLGA nanoparticles in mucus was tracked by multiple particles tracking method(MPT).Alteration of mucus properties by addition of surfactants was evaluated by rheology and morphology study. Rat intestinal villus penetration study was used to further evaluate penetration enhancement of nanoparticles. The effective diffusivities of the nanoparticles in surfactants pretreated mucus were increased by 2–3 times and the mucus barrier regulating capacity was also surfactant type dependent. Sodium dodecyl sulfate(SDS) increased the complex viscosity and viscoelastic properties of mucus,but poloxamer presented a decreased trend. Tween 80 maintained the rheological property of the mucus. With the mucus barrier regulated by surfactants,the penetration of nanoparticles in intestinal villus was obviously increased. In summary,the mucus penetration ability of nanoparticles could be enhanced by altering mucus microenvironment with surfactants. Tween 80 which largely retains the original mucus rheology and morphology properties may be a promising candidate for facilitating nanoparticle penetration through the mucus barrier with good safety profile.展开更多
Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2&...Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2</sub>O<sub>2</sub>-induced endothelial senescence.Methods Primary human umbilical vein endothelial cells(HUVECs) senescence was induced by H<sub>2</sub>O<sub>2</sub> as judged by senescence-associated P-galactosidase assay (SA-P-gal).Fntracellur superoxide dismutase(S0D1) activity and malondialdehyde(MDA) level were determined by commercial kit.S0D1 mRNA and protein expression were analyzed by real time PCR and Western blot.Reactive oxygen species(ROS) were determined by flow cytometry.Results Rb1 was found to reverse endothelial senescence,as witnessed by a significant decrease of senescent cell numbers. Rbl could markedly increase intracellular SOD activity, decrease the MDA level,and suppress the generation of intracellular ROS in H<sub>2</sub>O<sub>2</sub>-treated HUVECs.Consistent with these findings,Rbl can effectively restore SOD1 mRNA and protein expression which decreased in H<sub>2</sub>O<sub>2</sub> treated cells. Conclusions Our report demonstrates thatRbl can exert reversal effects on H<sub>2</sub>O<sub>2</sub>-induced cellular senescence through modulating cellular redox status.展开更多
Glucose fuel cells(GFCs)driven by abiotic catalysts are promising green power sources for portable or wearable devices.In this work,a CoO_(x)incorporated carbon nanofiber(CoO_(x)@CNF)catalyst with mixed valences cobal...Glucose fuel cells(GFCs)driven by abiotic catalysts are promising green power sources for portable or wearable devices.In this work,a CoO_(x)incorporated carbon nanofiber(CoO_(x)@CNF)catalyst with mixed valences cobalt oxides have been developed through partial oxidation of pyrolyzed electrospun Co^(2+)/poly acrylonitrile fibers.The cobalt valence modulating could be achieved via regulating the incorporation ratio of cobalt acetate in precursors or the oxidation temperature of the pyrolyzed fibers.Electrocatalytic analyses show that the presence of CoO in CoO_(x)@CNF will provide more active sites for glucose electrooxidation,and thus enhance the electrocatalytic performance significantly.As a result,the glucose fuel cell built with the CoO.@CNF anode containing both CoO and Co_(3)O_(4)delivered a maximum power density of 270μW cm^(-2),which is higher than that of other reported Co_(3)O_(4)based GFCs.This work provides a simple strategy to develop excellent transition metal catalysts for GFCs to expand their applications in portable and wearable energy devices.展开更多
An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integratio...An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.展开更多
A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical cal...A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical calculation and experimental study are carried out for thiskind of antenna.A planar antenna of conductor modulating periodic structure is realized in 8mmwave band.It has an aperture area of 90×90mm^2.The measured performances of the antennaare good.展开更多
Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric an...Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.展开更多
The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small syste...The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.展开更多
This study assessed the associations between vaginal douching practice and the adverse reproductive tract outcomes, and the risk modulating factors among young women. The data source was a cross-sectional population b...This study assessed the associations between vaginal douching practice and the adverse reproductive tract outcomes, and the risk modulating factors among young women. The data source was a cross-sectional population based sample of 1488 women aged 18-35 years in a university community. Self-administered socio-demographic and female genital hygiene practices questionnaire were used to survey the participants. The overall prevalence of vaginal douching was 79.8%. Pelvic pain, vaginal itching, and vaginal discharge were significantly associated with higher odds for douching. Moreover, participants with menstrual disorders such as menorrhagia, oligomenorrhea, and inter-menstrual bleeding douche more often than those without these disorders. Early-onset, higher-frequency, and prolonged douching, as well as douching with commercial vaginal deodorant and inserting the nozzle of the douching tube inside the vagina were associated with higher rate of pelvic and menstrual disorders. The present study revealed a paradoxical relation between vaginal douching and adverse reproductive tract disorders, which supports the hypothesis of confounding by indication. The direction of the association is dependent on several modifiable and unmodifiable risk factors.展开更多
We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quant...We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.展开更多
Radiotherapy, a standard adjuvant to surgery, improves survival rates in patients, but resistance to treatment by some gliomas limits the success of clinical application. Emerging evidence indicates that the tumor mic...Radiotherapy, a standard adjuvant to surgery, improves survival rates in patients, but resistance to treatment by some gliomas limits the success of clinical application. Emerging evidence indicates that the tumor microenvironment contributes to radiation resistance by regulating the levels of cytokines and growth factors[1;2].展开更多
Background To study the molecular mechanisms of CREG(the cellular repressor of E1A-stimulated gene) on proliferation of VSMCs in vitro.Methods The pRc/CMV-CREG plasmid or the pSM2-siCREG plasmid was transferred into h...Background To study the molecular mechanisms of CREG(the cellular repressor of E1A-stimulated gene) on proliferation of VSMCs in vitro.Methods The pRc/CMV-CREG plasmid or the pSM2-siCREG plasmid was transferred into human vascular smooth muscle cells(hVSMCs) to produce the cell clone that over-expression or down-expression of CREG respectively.BrdU assay and FACS cell cycle analysis were used to detect the proliferation of cells.Western blotting and immunocytochemistry show the expression and localization of IGF2R in hVSMCs.RT-PCR and ELISA assay determined the expression and secretion of IGFII factor. Alex488-labeled rhIGFII was used to investigate the endocysis of cells.And the blockade of IGFII internalization by treatment both the neutralized antibody of anti-IGF2R and rsIGF2R detected the effect of IGFII on VSMCs growth. Furthermore,Western blotting and signal pathway inhibitor were used to analysis the activation of PI3K/AKT and ERK on VSMCs proliferation.Results Western blotting identified that the expression of CREG in hVSMCs-CREG cells increased compared to control cell,and the decreased obviously in hVSMCs-siCREG cells.Meanwhile,the overexpression of CREG in cells was detected to inhibit the proliferation of VSMCs and to enhance the distribution of IGF2R in cellular membrane.Furthermore,overexpression of CREG also accelerated the endocysis of IGFII in hVSMCs-CREG,and attenuate the secretion of IGFII into cell medium by ELISA analysis and Alex488 labeled IGFII analysis.Blockade experiments both neutralized antibody of IGF2R and rhIGF2R fragment determined that enhancement of IGFII secretion promoted the VSMCs proliferation,and PI3K/AKT and ERK signal pathway mediated the effect of IGFII on VSMCs.Conclusions Altogether, these data indicate that CREG inhibits the proliferation of hVSMCs through interfering into the internalization pathway of IGF2R-IGFII.展开更多
To investigate the modulating effects of survivn antisense oligonucletode (ASODN) on the cell cycle and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and explore its mechanism.Methods Survivin ...To investigate the modulating effects of survivn antisense oligonucletode (ASODN) on the cell cycle and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and explore its mechanism.Methods Survivin ASODN was transfected into SMMC-7721 cells mediated by DOTAP liposomal reagent.Electron microscopy,flow cytometry and RT-PCR were used to detect the changes in cell ultrastructure,apoptosis,cell cycle and the expression of cyclinB1 mRNA,respectively.Results After transfection of survivin ASODN,the expression of cyclinB1 mRNA in the cells significantly increased and increase in G2-M arrest and apoptosis appeared.Meanwhile,the cell ultrastructure had apoptotic changes such as chromatin condensation and apoptotic body formation.Conclusion Survivin ASODN can induce the expression of cyclinB1 that may result in G2-M arrest.Consequently,apoptosis is triggered.Survivin ASODN transfection might be an improtant new treatment for HCC.14 refs,2 figs,1 tab.展开更多
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−...The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.展开更多
An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorpo...The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.展开更多
基金supported by the key project of the Natural Science Foundation of Chongqing(cstc2020jcyj-zdxmX0029)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100412).
文摘Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106 and 52002199Major Basic Research Program of the Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+2 种基金the Natural Science Foundation of Shandong Province under Grant No. ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No. 2020KJA004the Taishan Scholars Program of Shandong Province under Grant No. ts201511034
文摘In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation.To solve these problems,herein,we introduce abundant oxygen vacancies into the flower-likeδ-MnO_(2)nanostructure and effectively modulate the vacancy defects to reach the optimal level(δ-MnO_(2)-x-2.0).The smart design intrinsically tunes the electronic structure,guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites,which not only effectively accelerates charge transfer rate during reaction processes,but also endows more redox reactions,as verified by first-principle calculations.These merits can help the fabricatedδ-MnO_(2)-x-2.0 cathode to present a large specific capacity of 551.8 mAh g^(-1) at 0.5 A g^(-1),high-rate capability of 262.2 mAh g^(-1) at 10 A g^(-1) and an excellent cycle lifespan(83%of capacity retention after 1500 cycles),which is far superior to those of the other metal compound cathodes.In addition,the charge/discharge mechanism of theδ-MnO_(2)-x-2.0 cathode has also been elaborated through ex situ techniques.This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.
基金supported by the National Natural Science Foundation of China (Grant No. NSFC62004182)the Career Development Grant of Institute of Chemical Materials (Grant No. STB-2021-10)the Sichuan Science and Technology Program (Grant No. 2022JDRC0021)。
文摘Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.
基金supported by grants from the National Natural Science Foundation of China(81200763 to WG and 81070809 to YZ)the Program for New Century Excellent Talents(NCET)at the University from Ministry of Education of China(NCET-11-0026)+1 种基金the PKU School of Stomatology for Talented Young Investigators(PKUSS20150107)the Construction Program for the National Key Clinical Specialty from the National Health and Family Planning Commission of China(2011)
文摘Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulation plays an important role in the developmental origins of osteoporosis; however, few studies have investigated the potential of epigenetic therapy to improve or rescue the osteogenic ability of bone marrow mesenchymal stem cells(BMMSCs) under osteoporotic conditions. Here, we investigated pargyline, an inhibitor of lysine-specific demethylase 1(LSD1), which mainly catalyzes the demethylation of the di- and mono-methylation of H3K4. We demonstrated that 1.5 mmol·Lpargyline was the optimal concentration for the osteogenic differentiation of human BMMSCs. Pargyline rescued the osteogenic differentiation ability of mouse BMMSCs under osteoporotic conditions by enhancing the dimethylation level of H3K4 at the promoter regions of osteogenesis-related genes. Moreover, pargyline partially rescued or prevented the osteoporotic conditions in aged or ovariectomized mouse models, respectively. By introducing the concept of epigenetic therapy into the field of osteoporosis, this study demonstrated that LSD1 inhibitors could improve the clinical practice of MSC-based bone tissue engineering and proposes their novel use to treat osteoporosis.
基金financially supported by the National Natural Science Foundation of China (Grant No. 31870987)
文摘Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetration is commonly overlooked. Therefore,in this study,taking fluorescent labeled PLGA(poly(lactic-co-glycolic acid)) nanoparticles as a tool,the influence of anionic and nonionic surfactants on mucus penetration ability of nanoparticles and their mucus barrier regulating ability were studied. The movement of PLGA nanoparticles in mucus was tracked by multiple particles tracking method(MPT).Alteration of mucus properties by addition of surfactants was evaluated by rheology and morphology study. Rat intestinal villus penetration study was used to further evaluate penetration enhancement of nanoparticles. The effective diffusivities of the nanoparticles in surfactants pretreated mucus were increased by 2–3 times and the mucus barrier regulating capacity was also surfactant type dependent. Sodium dodecyl sulfate(SDS) increased the complex viscosity and viscoelastic properties of mucus,but poloxamer presented a decreased trend. Tween 80 maintained the rheological property of the mucus. With the mucus barrier regulated by surfactants,the penetration of nanoparticles in intestinal villus was obviously increased. In summary,the mucus penetration ability of nanoparticles could be enhanced by altering mucus microenvironment with surfactants. Tween 80 which largely retains the original mucus rheology and morphology properties may be a promising candidate for facilitating nanoparticle penetration through the mucus barrier with good safety profile.
文摘Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2</sub>O<sub>2</sub>-induced endothelial senescence.Methods Primary human umbilical vein endothelial cells(HUVECs) senescence was induced by H<sub>2</sub>O<sub>2</sub> as judged by senescence-associated P-galactosidase assay (SA-P-gal).Fntracellur superoxide dismutase(S0D1) activity and malondialdehyde(MDA) level were determined by commercial kit.S0D1 mRNA and protein expression were analyzed by real time PCR and Western blot.Reactive oxygen species(ROS) were determined by flow cytometry.Results Rb1 was found to reverse endothelial senescence,as witnessed by a significant decrease of senescent cell numbers. Rbl could markedly increase intracellular SOD activity, decrease the MDA level,and suppress the generation of intracellular ROS in H<sub>2</sub>O<sub>2</sub>-treated HUVECs.Consistent with these findings,Rbl can effectively restore SOD1 mRNA and protein expression which decreased in H<sub>2</sub>O<sub>2</sub> treated cells. Conclusions Our report demonstrates thatRbl can exert reversal effects on H<sub>2</sub>O<sub>2</sub>-induced cellular senescence through modulating cellular redox status.
基金We gratefully acknowledge to the financial support from the Chongqing Key Laboratory for Advanced MaterialsTechnologies of Clean Energies and Academician Station of Hainan Province(SQ2021PTZ0024).
文摘Glucose fuel cells(GFCs)driven by abiotic catalysts are promising green power sources for portable or wearable devices.In this work,a CoO_(x)incorporated carbon nanofiber(CoO_(x)@CNF)catalyst with mixed valences cobalt oxides have been developed through partial oxidation of pyrolyzed electrospun Co^(2+)/poly acrylonitrile fibers.The cobalt valence modulating could be achieved via regulating the incorporation ratio of cobalt acetate in precursors or the oxidation temperature of the pyrolyzed fibers.Electrocatalytic analyses show that the presence of CoO in CoO_(x)@CNF will provide more active sites for glucose electrooxidation,and thus enhance the electrocatalytic performance significantly.As a result,the glucose fuel cell built with the CoO.@CNF anode containing both CoO and Co_(3)O_(4)delivered a maximum power density of 270μW cm^(-2),which is higher than that of other reported Co_(3)O_(4)based GFCs.This work provides a simple strategy to develop excellent transition metal catalysts for GFCs to expand their applications in portable and wearable energy devices.
基金Project(50875028) supported by the National Natural Science Foundation of China
文摘An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.
文摘A novel planar leaky-wave antenna of conductor modulating periodic structure formillimeter wave application is proposed.Using the theory of two-dimensional periodic admittancesurface,theoretical analysis,numerical calculation and experimental study are carried out for thiskind of antenna.A planar antenna of conductor modulating periodic structure is realized in 8mmwave band.It has an aperture area of 90×90mm^2.The measured performances of the antennaare good.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07402001)the Ministry of Science and Technology of China for their financial support and the associated project is the Key Program for International S&T Cooperation Projects(No.2018YFE0124600)。
文摘Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.
基金Project (10276032) supportedjointly by the National Natural Science Foundation of China and by the Science Foundationof China Academy of Engineering Physics NSAFproject(2005038228) supported by Postdoctoral Science Foundation of China projectsupported by the Postdoctoral Science Foundation of Central South University(2005)
文摘The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.
文摘This study assessed the associations between vaginal douching practice and the adverse reproductive tract outcomes, and the risk modulating factors among young women. The data source was a cross-sectional population based sample of 1488 women aged 18-35 years in a university community. Self-administered socio-demographic and female genital hygiene practices questionnaire were used to survey the participants. The overall prevalence of vaginal douching was 79.8%. Pelvic pain, vaginal itching, and vaginal discharge were significantly associated with higher odds for douching. Moreover, participants with menstrual disorders such as menorrhagia, oligomenorrhea, and inter-menstrual bleeding douche more often than those without these disorders. Early-onset, higher-frequency, and prolonged douching, as well as douching with commercial vaginal deodorant and inserting the nozzle of the douching tube inside the vagina were associated with higher rate of pelvic and menstrual disorders. The present study revealed a paradoxical relation between vaginal douching and adverse reproductive tract disorders, which supports the hypothesis of confounding by indication. The direction of the association is dependent on several modifiable and unmodifiable risk factors.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274178,61475197 and 61590932the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No 15KJA120002+1 种基金the outstanding Youth Project of Jiangsu Province under Grant No BK20150039the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No YX002001
文摘We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.
基金Key Program of National Natural Science Foundation of China (U1432248), National Natural Science Foundation of China (11305224, 11205219)
文摘Radiotherapy, a standard adjuvant to surgery, improves survival rates in patients, but resistance to treatment by some gliomas limits the success of clinical application. Emerging evidence indicates that the tumor microenvironment contributes to radiation resistance by regulating the levels of cytokines and growth factors[1;2].
文摘Background To study the molecular mechanisms of CREG(the cellular repressor of E1A-stimulated gene) on proliferation of VSMCs in vitro.Methods The pRc/CMV-CREG plasmid or the pSM2-siCREG plasmid was transferred into human vascular smooth muscle cells(hVSMCs) to produce the cell clone that over-expression or down-expression of CREG respectively.BrdU assay and FACS cell cycle analysis were used to detect the proliferation of cells.Western blotting and immunocytochemistry show the expression and localization of IGF2R in hVSMCs.RT-PCR and ELISA assay determined the expression and secretion of IGFII factor. Alex488-labeled rhIGFII was used to investigate the endocysis of cells.And the blockade of IGFII internalization by treatment both the neutralized antibody of anti-IGF2R and rsIGF2R detected the effect of IGFII on VSMCs growth. Furthermore,Western blotting and signal pathway inhibitor were used to analysis the activation of PI3K/AKT and ERK on VSMCs proliferation.Results Western blotting identified that the expression of CREG in hVSMCs-CREG cells increased compared to control cell,and the decreased obviously in hVSMCs-siCREG cells.Meanwhile,the overexpression of CREG in cells was detected to inhibit the proliferation of VSMCs and to enhance the distribution of IGF2R in cellular membrane.Furthermore,overexpression of CREG also accelerated the endocysis of IGFII in hVSMCs-CREG,and attenuate the secretion of IGFII into cell medium by ELISA analysis and Alex488 labeled IGFII analysis.Blockade experiments both neutralized antibody of IGF2R and rhIGF2R fragment determined that enhancement of IGFII secretion promoted the VSMCs proliferation,and PI3K/AKT and ERK signal pathway mediated the effect of IGFII on VSMCs.Conclusions Altogether, these data indicate that CREG inhibits the proliferation of hVSMCs through interfering into the internalization pathway of IGF2R-IGFII.
文摘To investigate the modulating effects of survivn antisense oligonucletode (ASODN) on the cell cycle and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and explore its mechanism.Methods Survivin ASODN was transfected into SMMC-7721 cells mediated by DOTAP liposomal reagent.Electron microscopy,flow cytometry and RT-PCR were used to detect the changes in cell ultrastructure,apoptosis,cell cycle and the expression of cyclinB1 mRNA,respectively.Results After transfection of survivin ASODN,the expression of cyclinB1 mRNA in the cells significantly increased and increase in G2-M arrest and apoptosis appeared.Meanwhile,the cell ultrastructure had apoptotic changes such as chromatin condensation and apoptotic body formation.Conclusion Survivin ASODN can induce the expression of cyclinB1 that may result in G2-M arrest.Consequently,apoptosis is triggered.Survivin ASODN transfection might be an improtant new treatment for HCC.14 refs,2 figs,1 tab.
基金financially supported by the NSFC-Yunnan Joint Foundation(U2002213)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the‘Double-First Class’University Construction Project(C176220100042 and CZ21623201)。
文摘The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
文摘The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.