Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages ...This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the correspondin...We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.展开更多
A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge...A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.展开更多
Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2...Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.展开更多
We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investig...We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.展开更多
Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the d...Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on...The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on a local illuminance.The relationship between the distributions of an illuminance and a birefringence will be discussed.This spatial light modulator can work in real-time. The experiment shows,in order to increase the sensitivity of BSO crystal,an electric field of 6 kV/cm at an atmosphere pressure of 15×10 5 Pa should be applied to BSO crystal.With BSO we have measured 3-dimensional deformation by means of real-time holography.展开更多
With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transm...With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transmitted light through the optical analyzer of various composition of electro-optical effect with magneto-optical effect are derived. The results show that the output beam from the analyzer carries information on current (or magnetic field), voltage (or electric field), active power and apparent power. When the light beam transmitted through the analyzer are transformed into electric signals, three kinds of information are included: the DC term corresponding to an active power, the term with frequency ω(50 Hz) corresponding to current or voltage, and the term with frequency 2ω(100 Hz) corresponding to an apparnt power.So, we can use the electric filter circuit to pick out the DC component for measuring active power; to pick out the component with frequency ω(50 Hz) for measuring current or voltage; and to pick out the component with frequency 2ω(100 Hz) for measuring apparent power. The paper discusses what quantities are measured when the analyzer is set on certain definite values, and ponts out the optimum selection for various measurements.展开更多
Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly impro...Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly improves the processing efficiency,accuracy,and flexibility,and presents wider prospects over traditional mechanical technologies for machining three-dimensional,hard,brittle,or transparent materials.In this review,we introduce:(1)The role of spatial light modulation technology in the development of femtosecond laser manufacturing;(2)the structured light generated by spatial light modulation and its generation methods;and(3)representative applications of spatial-light-modulated femtosecond laser manufacturing,including aberration correction,parallel processing,focal field engineering,and polarization control.Finally,we summarize the present challenges in the field and possible future research.展开更多
Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structur...Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.展开更多
In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which...In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.展开更多
Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm C...Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.展开更多
Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the criti...Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the critical shortcomings,which limits the further development and applications of this technique.In this paper,we focus on the issues of imaging efficiency of a single pixel imaging system.We propose semi-continuous wavelet transform(SCWT)protocol and introduce the protocol into the single pixel imaging system.The proposed protocol is something between continuous wavelet transform and discrete wavelet transform,which allows the usage of those smooth(usually non-orthogonal,and they have advantages in representing smooth signals compressively,which can improve the imaging speed of single pixel imaging)wavelets and with limited numbers of measurements.The proposed imaging scheme is studied,and verified by simulations and experiments.Furthermore,a comparison between our proposed scheme and existing imaging schemes are given.According to the results,the proposed SCWT scheme is proved to be effective in reconstructing a image compressively.展开更多
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were crea...This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
文摘This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金This work was financially supported by grants from the National Basic Research Program of China (973 Program)(No.2015CB352003)the National Natural Science Foundation of China (Nos.61377013,61335003,61378051,and 61427818)+1 种基金NSFC of Zhejiang province LR16F050001,Innovation Joint Research Center for iCPS (2015XZZX005-01)Open Foundation of the State Key Laboratory of Modern Optical Instrumentation.
文摘We report three-dimensional fluorescence emission difference(3D-FED)microscopy using a spatial light modulator(SLM).Zero phase,0–2vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid,doughnut and z-axis hollow excitation spot,respectively.Our technique achieves super-resolved image by subtracting three di®erently acquired images with proper subtractive factors.Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED.Also,the improvement of lateral and axial resolution is demonstrated by imaging 100 nm°uorescent beads.The experiment yields lateral resolution of 140 nm and axial resolution of approximate 380 nm.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2010ZX02201)the National Natural Science Foundation of China (Grant No. 61176069)the National Defense Pre-Research of China (Grant No. 51308020304)
文摘A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.
基金supported by the National Natural Science Foundation of China (Grant No. 60878048)the China Postdoctoral Science Foundation (Grant No. 20080440898)
文摘Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flybaek region when phase decreases immediately from 2~r to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.
基金Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091the National Natural Science Foundation of China under Grant No 21627813
文摘We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
基金Project supported by the National Natural Science Foundation of China (Grant No 60477018) and the Major Program of the National Natural Science Foundation of China (Grant No 60436020).
文摘Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
文摘The liquid crystal television spatial light modulator (LCTVSLM) characterized is usable in optical processing applications,e.g.,optical pattern recognition,associative memory, optical computing,correlation detection and optical data processing systems.The array performance and real-time optical correlation applications are reviewed.
文摘The combined use of the photoelectric and electro-optic properties of BSO crystal (Bi 12 SiO 20 ) leads to realize spatial light modulation.Under some condition,BSO crystal can become birefringent depending on a local illuminance.The relationship between the distributions of an illuminance and a birefringence will be discussed.This spatial light modulator can work in real-time. The experiment shows,in order to increase the sensitivity of BSO crystal,an electric field of 6 kV/cm at an atmosphere pressure of 15×10 5 Pa should be applied to BSO crystal.With BSO we have measured 3-dimensional deformation by means of real-time holography.
文摘With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transmitted light through the optical analyzer of various composition of electro-optical effect with magneto-optical effect are derived. The results show that the output beam from the analyzer carries information on current (or magnetic field), voltage (or electric field), active power and apparent power. When the light beam transmitted through the analyzer are transformed into electric signals, three kinds of information are included: the DC term corresponding to an active power, the term with frequency ω(50 Hz) corresponding to current or voltage, and the term with frequency 2ω(100 Hz) corresponding to an apparnt power.So, we can use the electric filter circuit to pick out the DC component for measuring active power; to pick out the component with frequency ω(50 Hz) for measuring current or voltage; and to pick out the component with frequency 2ω(100 Hz) for measuring apparent power. The paper discusses what quantities are measured when the analyzer is set on certain definite values, and ponts out the optimum selection for various measurements.
基金This work was supported by the National Key R&D Program of China(Grant No.2021YFB2802000)the National Natural Science Foundation of China(Grant Nos.61827826,62175086,62131018)+1 种基金the Natural Science Foundation of Jilin Province(Grant No.20220101107JC)the Education Department of Jilin Province(Grant No.JJKH20221003KJ).
文摘Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly improves the processing efficiency,accuracy,and flexibility,and presents wider prospects over traditional mechanical technologies for machining three-dimensional,hard,brittle,or transparent materials.In this review,we introduce:(1)The role of spatial light modulation technology in the development of femtosecond laser manufacturing;(2)the structured light generated by spatial light modulation and its generation methods;and(3)representative applications of spatial-light-modulated femtosecond laser manufacturing,including aberration correction,parallel processing,focal field engineering,and polarization control.Finally,we summarize the present challenges in the field and possible future research.
基金Project supported by the National Natural Science Foundation of China (Grant No.92050116)。
文摘Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.
基金supported by the Ministerio de Ciencia e Innovación,Spain(PID2021-126509OB-C22)Generalitat Valenciana(CIAICO/2021/276)。
文摘In this work,we compare different methods for implementing a triplicator,a phase grating that generates three equiintense diffraction orders.The design with optimal efficiency features a continuous phase profile,which cannot be easily reproduced,and is typically affected by quantization.We compare its performance with binary and sinusoidal phase profiles.We also analyze the effect of quantizing the phase levels.Finally,a random approach is adopted to eliminate the additional harmonic orders.In all cases,a liquid-crystal-on-silicon spatial light modulator is employed to experimentally verify and compare the different approaches.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2011J043)+1 种基金the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. 8010401JX0806)the Young Scientists Foundation of Sichuan Province of China (Grant No. 2010JQ0006)
文摘Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.
基金the Natural Science Foundation of Jilin Province,China(Grand No.YDZJ202101ZYTS030)。
文摘Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the critical shortcomings,which limits the further development and applications of this technique.In this paper,we focus on the issues of imaging efficiency of a single pixel imaging system.We propose semi-continuous wavelet transform(SCWT)protocol and introduce the protocol into the single pixel imaging system.The proposed protocol is something between continuous wavelet transform and discrete wavelet transform,which allows the usage of those smooth(usually non-orthogonal,and they have advantages in representing smooth signals compressively,which can improve the imaging speed of single pixel imaging)wavelets and with limited numbers of measurements.The proposed imaging scheme is studied,and verified by simulations and experiments.Furthermore,a comparison between our proposed scheme and existing imaging schemes are given.According to the results,the proposed SCWT scheme is proved to be effective in reconstructing a image compressively.
基金supported by the National Natural Science Foundation of China (Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China (Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholarand Innovative Research Team and Shanghai Leading Academic Discipline Project (Grant No.B408)the Youth Foundation of Jiangxi Educational Committee (Grant No.GJJ09530)the Scientific Research Foundation of ECIT (Grant No.DSH0417)
文摘This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.