Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be...Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator.展开更多
Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental...Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have con...Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have contrib-uted to the emergence and spread of antimicrobial resistance.Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated.Lactoferrin has shown promising results against porcine enterotoxigenic E.coli strains,both in vitro and in vivo.Results We investigated the influence of bovine lactoferrin(bLF)on the microbiome of healthy and infected weaned piglets.Additionally,we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E.coli(STEC)infection.Therefore,2 in vivo trials were conducted:a microbiome trial and a challenge infection trial,using an F18+STEC strain.BLF did not affect theα-andβ-diversity.However,bLF groups showed a higher relative abundance(RA)for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa.When analysing the immune response upon infection,the STEC group exhibited a significant increase in F18-specific IgG serum levels,whereas this response was absent in the bLF group.Conclusion Taken together,the oral administration of bLF did not have a notable impact on theα-andβ-diversity of the gut microbiome in weaned piglets.Nevertheless,it did increase the RA of the Actinobacteria phylum and Bifi-dobacterium genus,which have previously been shown to play an important role in maintaining gut homeostasis.Furthermore,bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the...The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.展开更多
An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,decipherin...An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation.With these delicate dynamics in mind,immunomodulatory therapies have emerged as a promising avenue for miti-gating the challenges posed by COVID-19.Precision in manipulating immune pathways presents an opportunity to alter the host response,optimizing antiviral defenses while curbing deleterious inflammation.This review article compre-hensively analyzes immunomodulatory interventions in managing COVID-19.We explore diverse approaches to mitigating the hyperactive immune response and its impact,from corticosteroids and non-steroidal drugs to targeted biologics,including anti-viral drugs,cytokine inhibitors,JAK inhibitors,convalescent plasma,monoclonal antibodies(mAbs)to severe acute respiratory syndrome coronavirus 2,cell-based therapies(i.e.,CAR T,etc.).By summarizing the current evidence,we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.CS Glucocorticoids are among the most widely prescribed drugs with their immune-suppressive and anti-inflammatory effect[84].The current guidelines for the treatment of COVID-19 recommend against the use of dexamethasone or other systemic CS in non-hospitalized patients in the absence of another indication[70].The RECOVERY trial demonstrates the reduced 28-d mortality among hospitalized patients with COVID-19 using dexamethasone compared to the usual standard of care,along with other investigators,such as Ahmed and Hassan[85].The benefit of dexamethasone was seen only among participants receiving either oxygen alone or invasive mechanical ventilation at randomization but not among those receiving no respiratory support at enrollment[85].In a systematic review and meta-analysis,Albuquerque et al[86]showed that in comparison to tocilizumab,baricitinib,and sarilumab are associated with high probabilities of similar mortality reductions among hospitalized COVID-19 concurrently treated with CS.As a result of the absence of SARS-CoV-2-specific antiviral medications,the effectiveness of COVID-19 treatments is reduced.Several COVID-19 therapies are now under investigation.However,the majority of them lack specificity,efficacy,and safety[87].Immunotherapy is a ground-breaking medical treatment that manipulates the immune system to fight diseases.Translational research is rapidly progressing,recognized as a significant breakthrough in 2013[88].Among the immunotherapeutic options for treating COVID-19 are Immunoglobulin,CP,antibodies,mAbs(mAbs),NK cells,T cells,TLR,cytokine therapies and immune modulators.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.52106099)the Natural Science Foundation of Shandong Province of China (Grant No.ZR2022YQ57)the Taishan Scholars Program。
文摘Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator.
基金supported by funds from the Italian Ministry of Health,Ricerca Finalizzata,(Grant N.GR-2013-02355882 and GR-2021-12373946 to AL)5x1000 Project of the Istituto Superiore di Sanità(Project code:ISS5x1000_21-949432e8c9be to AL)the European Union–NextGeneration EU through the Italian Ministry of University and Research under PNRR-M4C2-I1.3 Project PE_00000019“HEAL ITALIA”to EA(CUP I83C22001830006)。
文摘Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
基金The research that yielded these results,was funded by the Belgian Federal Public Service of Health,Food Chain Safety and Environment through the contract RF 17/6314 LactoPigHealthMatthias Dierick is supported by the Flemish fund for scientific research(FWO3S036319).
文摘Background Post-weaned piglets suffer from F18+Escherichia coli(E.coli)infections resulting in post-weaning diar-rhoea or oedema disease.Frequently used management strategies,including colistin and zinc oxide,have contrib-uted to the emergence and spread of antimicrobial resistance.Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated.Lactoferrin has shown promising results against porcine enterotoxigenic E.coli strains,both in vitro and in vivo.Results We investigated the influence of bovine lactoferrin(bLF)on the microbiome of healthy and infected weaned piglets.Additionally,we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E.coli(STEC)infection.Therefore,2 in vivo trials were conducted:a microbiome trial and a challenge infection trial,using an F18+STEC strain.BLF did not affect theα-andβ-diversity.However,bLF groups showed a higher relative abundance(RA)for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa.When analysing the immune response upon infection,the STEC group exhibited a significant increase in F18-specific IgG serum levels,whereas this response was absent in the bLF group.Conclusion Taken together,the oral administration of bLF did not have a notable impact on theα-andβ-diversity of the gut microbiome in weaned piglets.Nevertheless,it did increase the RA of the Actinobacteria phylum and Bifi-dobacterium genus,which have previously been shown to play an important role in maintaining gut homeostasis.Furthermore,bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Natural Science Foundation of China (U2031210 and 11827804)Science Research from the China Manned Space Project (CMS-CSST-2021-A11 and CMS-CSST-2021-B04).
文摘The primary mirrors of current and future large telescopes always employ a segmented mirror configuration.The small but non-negligible gaps between neighboring segments cause additional diffraction,which restricts the performance of high-contrast coronagraph.To solve this problem,we propose a coronagraph system based on a single liquid crystal spatial light modulator(SLM).This spatial light modulator is used for amplitude apodization,and its feasibility and potential performance are demonstrated using a laboratory setup using the stochastic parallel gradient descent(SPGD)algorithm to control the spatial light modulator,which is based on point spread function(PSF)sensing and evaluation and optimized for maximum contrast in the discovery working area as a merit function.The system delivers a contrast in the order of 10−6,and shows excellent potential to be used in current and future large aperture telescopes,both on the ground and in space.
基金Supported by the European Union-Next Generation EU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘An overly exuberant immune response,characterized by a cytokine storm and uncontrolled inflammation,has been identified as a significant driver of severe coronavirus disease 2019(COVID-19)cases.Consequently,deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation.With these delicate dynamics in mind,immunomodulatory therapies have emerged as a promising avenue for miti-gating the challenges posed by COVID-19.Precision in manipulating immune pathways presents an opportunity to alter the host response,optimizing antiviral defenses while curbing deleterious inflammation.This review article compre-hensively analyzes immunomodulatory interventions in managing COVID-19.We explore diverse approaches to mitigating the hyperactive immune response and its impact,from corticosteroids and non-steroidal drugs to targeted biologics,including anti-viral drugs,cytokine inhibitors,JAK inhibitors,convalescent plasma,monoclonal antibodies(mAbs)to severe acute respiratory syndrome coronavirus 2,cell-based therapies(i.e.,CAR T,etc.).By summarizing the current evidence,we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.CS Glucocorticoids are among the most widely prescribed drugs with their immune-suppressive and anti-inflammatory effect[84].The current guidelines for the treatment of COVID-19 recommend against the use of dexamethasone or other systemic CS in non-hospitalized patients in the absence of another indication[70].The RECOVERY trial demonstrates the reduced 28-d mortality among hospitalized patients with COVID-19 using dexamethasone compared to the usual standard of care,along with other investigators,such as Ahmed and Hassan[85].The benefit of dexamethasone was seen only among participants receiving either oxygen alone or invasive mechanical ventilation at randomization but not among those receiving no respiratory support at enrollment[85].In a systematic review and meta-analysis,Albuquerque et al[86]showed that in comparison to tocilizumab,baricitinib,and sarilumab are associated with high probabilities of similar mortality reductions among hospitalized COVID-19 concurrently treated with CS.As a result of the absence of SARS-CoV-2-specific antiviral medications,the effectiveness of COVID-19 treatments is reduced.Several COVID-19 therapies are now under investigation.However,the majority of them lack specificity,efficacy,and safety[87].Immunotherapy is a ground-breaking medical treatment that manipulates the immune system to fight diseases.Translational research is rapidly progressing,recognized as a significant breakthrough in 2013[88].Among the immunotherapeutic options for treating COVID-19 are Immunoglobulin,CP,antibodies,mAbs(mAbs),NK cells,T cells,TLR,cytokine therapies and immune modulators.