Non-destructive techniques of in-situ stress measurement from oriented cored rocks have great potential to be developed as a cost cost-effective and reliable alternative to the conventional overcoring and hydraulic fr...Non-destructive techniques of in-situ stress measurement from oriented cored rocks have great potential to be developed as a cost cost-effective and reliable alternative to the conventional overcoring and hydraulic fracturing methods.The tangent modulus method(TMM)is one such technique that can be applied to oriented cored rocks to measure in-situ stresses.Like the deformation rate analysis(DRA),the rock specimen is subjected to two cycles of uniaxial compression and the stress-tangent modulus curve for the two cycles is obtained from the stress-strain curve.A bending point in the tangent modulus curve of the first cycle is observed,separating it from the tangent modulus curve of the second cycle.The point of separation between the two curves is assumed to be the previously applied maximum stress.A number of experiments were conducted on coal and coal measured rocks(sandstone and limestone)to understand the effect of loading conditions and the time delay.The specimens were preloaded,and cyclic compressions were applied under three different modes of loading,four different strain rates,and time delays of up to one week.The bending point in the stress-tangent modulus curves occurred approximately at the applied pre-stress levels under all three loading modes,and no effect of loading rate was observed on the bending points in TMM.However,a clear effect of time delay was observed on the TMM,contradicting the DRA results.This could be due to the sensitivity of TMM and the range of its applicability,all of which need further investigation for the in-situ stress measurement.展开更多
Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on freque...Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on frequent reshaping and permutation operations in the optimization process and use a shrinking step size or projection techniques to ensure core tensor nonnegativity, which leads to a slow convergence rate, especially for large-scale problems. In this paper, we first propose an NTR algorithm based on the modulus method(NTR-MM), which constrains core tensor nonnegativity by modulus transformation. Second, a low-rank approximation(LRA) is introduced to NTR-MM(named LRA-NTR-MM), which not only reduces the computational complexity of NTR-MM significantly but also suppresses the noise. The simulation results demonstrate that the proposed LRA-NTR-MM algorithm achieves higher computational efficiency than the state-of-the-art algorithms while preserving the effectiveness of feature extraction.展开更多
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The ...Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors, so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some ill-conditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.展开更多
Shanghai World Financial Center is one of the highest buildings in the world, of which cumulation of vertical deformation during construction is significant and worth investigating. A refined finite element model was ...Shanghai World Financial Center is one of the highest buildings in the world, of which cumulation of vertical deformation during construction is significant and worth investigating. A refined finite element model was developed to conduct full-process analysis of construction of super-high rise buildings like Shanghai World Financial Center, in which the discrete analysis method of time-varying structures and age-adjusted effective modulus method were both used. In the finite element analysis, the whole construction process was divided into a series of stages, each with a structural system that is a part of the whole structure and with different material parameters, geometrical parameters, loading and boundary conditions. The whole construction process of Shanghai World Financial Center in consideration of creep of concrete was simulated successfully by using the finite element model and the analytical method developed. With respect to different construction stage, the total vertical deformation, inter-floor compression deformation and the relative deformation between the outer frame and the core-wall were obtained through the analysis. The comparison between the results from the stage-wise full-process analysis of construction with and without considering the creep and the results from the conventional analysis of the whole building under the total load from all self-weight and construction applied to the structure "in one go" shows that the cumulative effect on the deformation from the construction process and the creep effect need to be considered in analyzing the deformation of Shanghai World Financial Center, and the super-high rise buildings suchlike. Finally, the simulation results correlate well with the monitoring results-a proof of the feasibility and the validity of this paper.展开更多
In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogene...In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.展开更多
A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and te...A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented展开更多
基金financially supported by the Australian Coal Association Research Program(ACARP)under project C29010.
文摘Non-destructive techniques of in-situ stress measurement from oriented cored rocks have great potential to be developed as a cost cost-effective and reliable alternative to the conventional overcoring and hydraulic fracturing methods.The tangent modulus method(TMM)is one such technique that can be applied to oriented cored rocks to measure in-situ stresses.Like the deformation rate analysis(DRA),the rock specimen is subjected to two cycles of uniaxial compression and the stress-tangent modulus curve for the two cycles is obtained from the stress-strain curve.A bending point in the tangent modulus curve of the first cycle is observed,separating it from the tangent modulus curve of the second cycle.The point of separation between the two curves is assumed to be the previously applied maximum stress.A number of experiments were conducted on coal and coal measured rocks(sandstone and limestone)to understand the effect of loading conditions and the time delay.The specimens were preloaded,and cyclic compressions were applied under three different modes of loading,four different strain rates,and time delays of up to one week.The bending point in the stress-tangent modulus curves occurred approximately at the applied pre-stress levels under all three loading modes,and no effect of loading rate was observed on the bending points in TMM.However,a clear effect of time delay was observed on the TMM,contradicting the DRA results.This could be due to the sensitivity of TMM and the range of its applicability,all of which need further investigation for the in-situ stress measurement.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62073087,61973087 and 61973090)the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B010154002)。
文摘Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on frequent reshaping and permutation operations in the optimization process and use a shrinking step size or projection techniques to ensure core tensor nonnegativity, which leads to a slow convergence rate, especially for large-scale problems. In this paper, we first propose an NTR algorithm based on the modulus method(NTR-MM), which constrains core tensor nonnegativity by modulus transformation. Second, a low-rank approximation(LRA) is introduced to NTR-MM(named LRA-NTR-MM), which not only reduces the computational complexity of NTR-MM significantly but also suppresses the noise. The simulation results demonstrate that the proposed LRA-NTR-MM algorithm achieves higher computational efficiency than the state-of-the-art algorithms while preserving the effectiveness of feature extraction.
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
文摘Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors, so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some ill-conditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
基金Sponsored by the Technology Pillar Program During the Eleventh Five-Year Plan Period (Grant No.2006BAJ01B02)
文摘Shanghai World Financial Center is one of the highest buildings in the world, of which cumulation of vertical deformation during construction is significant and worth investigating. A refined finite element model was developed to conduct full-process analysis of construction of super-high rise buildings like Shanghai World Financial Center, in which the discrete analysis method of time-varying structures and age-adjusted effective modulus method were both used. In the finite element analysis, the whole construction process was divided into a series of stages, each with a structural system that is a part of the whole structure and with different material parameters, geometrical parameters, loading and boundary conditions. The whole construction process of Shanghai World Financial Center in consideration of creep of concrete was simulated successfully by using the finite element model and the analytical method developed. With respect to different construction stage, the total vertical deformation, inter-floor compression deformation and the relative deformation between the outer frame and the core-wall were obtained through the analysis. The comparison between the results from the stage-wise full-process analysis of construction with and without considering the creep and the results from the conventional analysis of the whole building under the total load from all self-weight and construction applied to the structure "in one go" shows that the cumulative effect on the deformation from the construction process and the creep effect need to be considered in analyzing the deformation of Shanghai World Financial Center, and the super-high rise buildings suchlike. Finally, the simulation results correlate well with the monitoring results-a proof of the feasibility and the validity of this paper.
基金Projects(50708093,51208409)supported by the National Natural Science Foundation of ChinaProject(DB01129)supported by the Talent Foundation of Xi’an University of Architecture and Technology,China
文摘In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.
文摘A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented